Proving uniform continuity of $f(x) = sqrt{1-x^2}$ on $[-1,1]$












1












$begingroup$


I want to prove that $f(x) = sqrt{1-x^2}$ is uniform continuous on the interval $[-1,1]$. Let $f(x) = sqrt{1 - x^2}$. Then I need to show:



$forall epsilon > 0 enspace exists delta > 0 enspace forall x,y in [-1,1] enspace |x-y|<delta implies |f(x)-f(y)| < epsilon$.



Steps:



$|f(x)-f(y)| = |sqrt{1-x^2} - sqrt{1-y^2}|
= bigrlvertfrac{(sqrt{1-x^2}-sqrt{1-y^2})(sqrt{1-x^2}+sqrt{1-y^2})}{(sqrt{1-x^2}+sqrt{1-y^2})} bigrrvert = bigrlvert frac{1-x^2-(1-y^2)}{sqrt{1-x^2}+sqrt{1-y^2}} bigrrvert = bigrlvert frac{x^2-y^2}{sqrt{1-x^2}+sqrt{1-y^2}} bigrlvert = frac{|x+y||x-y|}{sqrt{1-x^2}+sqrt{1-y^2}} < frac{2delta}{sqrt{1-x^2}+sqrt{1-y^2}} leq frac{2delta}{sqrt{2 - x^2 - y^2}} $



The problem is that I can't bound this by constant as $sqrt{2-x^2-y^2} rightarrow 0$ as $x,y rightarrow1$. I feel I'm running out of tricks. How can one solve this?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
    $endgroup$
    – GReyes
    Jan 17 at 20:12
















1












$begingroup$


I want to prove that $f(x) = sqrt{1-x^2}$ is uniform continuous on the interval $[-1,1]$. Let $f(x) = sqrt{1 - x^2}$. Then I need to show:



$forall epsilon > 0 enspace exists delta > 0 enspace forall x,y in [-1,1] enspace |x-y|<delta implies |f(x)-f(y)| < epsilon$.



Steps:



$|f(x)-f(y)| = |sqrt{1-x^2} - sqrt{1-y^2}|
= bigrlvertfrac{(sqrt{1-x^2}-sqrt{1-y^2})(sqrt{1-x^2}+sqrt{1-y^2})}{(sqrt{1-x^2}+sqrt{1-y^2})} bigrrvert = bigrlvert frac{1-x^2-(1-y^2)}{sqrt{1-x^2}+sqrt{1-y^2}} bigrrvert = bigrlvert frac{x^2-y^2}{sqrt{1-x^2}+sqrt{1-y^2}} bigrlvert = frac{|x+y||x-y|}{sqrt{1-x^2}+sqrt{1-y^2}} < frac{2delta}{sqrt{1-x^2}+sqrt{1-y^2}} leq frac{2delta}{sqrt{2 - x^2 - y^2}} $



The problem is that I can't bound this by constant as $sqrt{2-x^2-y^2} rightarrow 0$ as $x,y rightarrow1$. I feel I'm running out of tricks. How can one solve this?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
    $endgroup$
    – GReyes
    Jan 17 at 20:12














1












1








1





$begingroup$


I want to prove that $f(x) = sqrt{1-x^2}$ is uniform continuous on the interval $[-1,1]$. Let $f(x) = sqrt{1 - x^2}$. Then I need to show:



$forall epsilon > 0 enspace exists delta > 0 enspace forall x,y in [-1,1] enspace |x-y|<delta implies |f(x)-f(y)| < epsilon$.



Steps:



$|f(x)-f(y)| = |sqrt{1-x^2} - sqrt{1-y^2}|
= bigrlvertfrac{(sqrt{1-x^2}-sqrt{1-y^2})(sqrt{1-x^2}+sqrt{1-y^2})}{(sqrt{1-x^2}+sqrt{1-y^2})} bigrrvert = bigrlvert frac{1-x^2-(1-y^2)}{sqrt{1-x^2}+sqrt{1-y^2}} bigrrvert = bigrlvert frac{x^2-y^2}{sqrt{1-x^2}+sqrt{1-y^2}} bigrlvert = frac{|x+y||x-y|}{sqrt{1-x^2}+sqrt{1-y^2}} < frac{2delta}{sqrt{1-x^2}+sqrt{1-y^2}} leq frac{2delta}{sqrt{2 - x^2 - y^2}} $



The problem is that I can't bound this by constant as $sqrt{2-x^2-y^2} rightarrow 0$ as $x,y rightarrow1$. I feel I'm running out of tricks. How can one solve this?










share|cite|improve this question











$endgroup$




I want to prove that $f(x) = sqrt{1-x^2}$ is uniform continuous on the interval $[-1,1]$. Let $f(x) = sqrt{1 - x^2}$. Then I need to show:



$forall epsilon > 0 enspace exists delta > 0 enspace forall x,y in [-1,1] enspace |x-y|<delta implies |f(x)-f(y)| < epsilon$.



Steps:



$|f(x)-f(y)| = |sqrt{1-x^2} - sqrt{1-y^2}|
= bigrlvertfrac{(sqrt{1-x^2}-sqrt{1-y^2})(sqrt{1-x^2}+sqrt{1-y^2})}{(sqrt{1-x^2}+sqrt{1-y^2})} bigrrvert = bigrlvert frac{1-x^2-(1-y^2)}{sqrt{1-x^2}+sqrt{1-y^2}} bigrrvert = bigrlvert frac{x^2-y^2}{sqrt{1-x^2}+sqrt{1-y^2}} bigrlvert = frac{|x+y||x-y|}{sqrt{1-x^2}+sqrt{1-y^2}} < frac{2delta}{sqrt{1-x^2}+sqrt{1-y^2}} leq frac{2delta}{sqrt{2 - x^2 - y^2}} $



The problem is that I can't bound this by constant as $sqrt{2-x^2-y^2} rightarrow 0$ as $x,y rightarrow1$. I feel I'm running out of tricks. How can one solve this?







analysis uniform-continuity






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 21:49









RRL

53.7k52675




53.7k52675










asked Jan 17 at 20:09









TedTed

858




858








  • 2




    $begingroup$
    There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
    $endgroup$
    – GReyes
    Jan 17 at 20:12














  • 2




    $begingroup$
    There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
    $endgroup$
    – GReyes
    Jan 17 at 20:12








2




2




$begingroup$
There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
$endgroup$
– GReyes
Jan 17 at 20:12




$begingroup$
There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
$endgroup$
– GReyes
Jan 17 at 20:12










1 Answer
1






active

oldest

votes


















1












$begingroup$

Hint:



$$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077450%2fproving-uniform-continuity-of-fx-sqrt1-x2-on-1-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Hint:



    $$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Hint:



      $$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Hint:



        $$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$






        share|cite|improve this answer









        $endgroup$



        Hint:



        $$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 17 at 20:23









        RRLRRL

        53.7k52675




        53.7k52675






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077450%2fproving-uniform-continuity-of-fx-sqrt1-x2-on-1-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅