Proving uniform continuity of $f(x) = sqrt{1-x^2}$ on $[-1,1]$
$begingroup$
I want to prove that $f(x) = sqrt{1-x^2}$ is uniform continuous on the interval $[-1,1]$. Let $f(x) = sqrt{1 - x^2}$. Then I need to show:
$forall epsilon > 0 enspace exists delta > 0 enspace forall x,y in [-1,1] enspace |x-y|<delta implies |f(x)-f(y)| < epsilon$.
Steps:
$|f(x)-f(y)| = |sqrt{1-x^2} - sqrt{1-y^2}|
= bigrlvertfrac{(sqrt{1-x^2}-sqrt{1-y^2})(sqrt{1-x^2}+sqrt{1-y^2})}{(sqrt{1-x^2}+sqrt{1-y^2})} bigrrvert = bigrlvert frac{1-x^2-(1-y^2)}{sqrt{1-x^2}+sqrt{1-y^2}} bigrrvert = bigrlvert frac{x^2-y^2}{sqrt{1-x^2}+sqrt{1-y^2}} bigrlvert = frac{|x+y||x-y|}{sqrt{1-x^2}+sqrt{1-y^2}} < frac{2delta}{sqrt{1-x^2}+sqrt{1-y^2}} leq frac{2delta}{sqrt{2 - x^2 - y^2}} $
The problem is that I can't bound this by constant as $sqrt{2-x^2-y^2} rightarrow 0$ as $x,y rightarrow1$. I feel I'm running out of tricks. How can one solve this?
analysis uniform-continuity
$endgroup$
add a comment |
$begingroup$
I want to prove that $f(x) = sqrt{1-x^2}$ is uniform continuous on the interval $[-1,1]$. Let $f(x) = sqrt{1 - x^2}$. Then I need to show:
$forall epsilon > 0 enspace exists delta > 0 enspace forall x,y in [-1,1] enspace |x-y|<delta implies |f(x)-f(y)| < epsilon$.
Steps:
$|f(x)-f(y)| = |sqrt{1-x^2} - sqrt{1-y^2}|
= bigrlvertfrac{(sqrt{1-x^2}-sqrt{1-y^2})(sqrt{1-x^2}+sqrt{1-y^2})}{(sqrt{1-x^2}+sqrt{1-y^2})} bigrrvert = bigrlvert frac{1-x^2-(1-y^2)}{sqrt{1-x^2}+sqrt{1-y^2}} bigrrvert = bigrlvert frac{x^2-y^2}{sqrt{1-x^2}+sqrt{1-y^2}} bigrlvert = frac{|x+y||x-y|}{sqrt{1-x^2}+sqrt{1-y^2}} < frac{2delta}{sqrt{1-x^2}+sqrt{1-y^2}} leq frac{2delta}{sqrt{2 - x^2 - y^2}} $
The problem is that I can't bound this by constant as $sqrt{2-x^2-y^2} rightarrow 0$ as $x,y rightarrow1$. I feel I'm running out of tricks. How can one solve this?
analysis uniform-continuity
$endgroup$
2
$begingroup$
There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
$endgroup$
– GReyes
Jan 17 at 20:12
add a comment |
$begingroup$
I want to prove that $f(x) = sqrt{1-x^2}$ is uniform continuous on the interval $[-1,1]$. Let $f(x) = sqrt{1 - x^2}$. Then I need to show:
$forall epsilon > 0 enspace exists delta > 0 enspace forall x,y in [-1,1] enspace |x-y|<delta implies |f(x)-f(y)| < epsilon$.
Steps:
$|f(x)-f(y)| = |sqrt{1-x^2} - sqrt{1-y^2}|
= bigrlvertfrac{(sqrt{1-x^2}-sqrt{1-y^2})(sqrt{1-x^2}+sqrt{1-y^2})}{(sqrt{1-x^2}+sqrt{1-y^2})} bigrrvert = bigrlvert frac{1-x^2-(1-y^2)}{sqrt{1-x^2}+sqrt{1-y^2}} bigrrvert = bigrlvert frac{x^2-y^2}{sqrt{1-x^2}+sqrt{1-y^2}} bigrlvert = frac{|x+y||x-y|}{sqrt{1-x^2}+sqrt{1-y^2}} < frac{2delta}{sqrt{1-x^2}+sqrt{1-y^2}} leq frac{2delta}{sqrt{2 - x^2 - y^2}} $
The problem is that I can't bound this by constant as $sqrt{2-x^2-y^2} rightarrow 0$ as $x,y rightarrow1$. I feel I'm running out of tricks. How can one solve this?
analysis uniform-continuity
$endgroup$
I want to prove that $f(x) = sqrt{1-x^2}$ is uniform continuous on the interval $[-1,1]$. Let $f(x) = sqrt{1 - x^2}$. Then I need to show:
$forall epsilon > 0 enspace exists delta > 0 enspace forall x,y in [-1,1] enspace |x-y|<delta implies |f(x)-f(y)| < epsilon$.
Steps:
$|f(x)-f(y)| = |sqrt{1-x^2} - sqrt{1-y^2}|
= bigrlvertfrac{(sqrt{1-x^2}-sqrt{1-y^2})(sqrt{1-x^2}+sqrt{1-y^2})}{(sqrt{1-x^2}+sqrt{1-y^2})} bigrrvert = bigrlvert frac{1-x^2-(1-y^2)}{sqrt{1-x^2}+sqrt{1-y^2}} bigrrvert = bigrlvert frac{x^2-y^2}{sqrt{1-x^2}+sqrt{1-y^2}} bigrlvert = frac{|x+y||x-y|}{sqrt{1-x^2}+sqrt{1-y^2}} < frac{2delta}{sqrt{1-x^2}+sqrt{1-y^2}} leq frac{2delta}{sqrt{2 - x^2 - y^2}} $
The problem is that I can't bound this by constant as $sqrt{2-x^2-y^2} rightarrow 0$ as $x,y rightarrow1$. I feel I'm running out of tricks. How can one solve this?
analysis uniform-continuity
analysis uniform-continuity
edited Jan 17 at 21:49
RRL
53.7k52675
53.7k52675
asked Jan 17 at 20:09
TedTed
858
858
2
$begingroup$
There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
$endgroup$
– GReyes
Jan 17 at 20:12
add a comment |
2
$begingroup$
There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
$endgroup$
– GReyes
Jan 17 at 20:12
2
2
$begingroup$
There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
$endgroup$
– GReyes
Jan 17 at 20:12
$begingroup$
There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
$endgroup$
– GReyes
Jan 17 at 20:12
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
$$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077450%2fproving-uniform-continuity-of-fx-sqrt1-x2-on-1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$
$endgroup$
Hint:
$$|sqrt{1-x^2} - sqrt{1-y^2}|^2 leqslant |sqrt{1-x^2} - sqrt{1-y^2}||sqrt{1-x^2} + sqrt{1-y^2}| = |x^2 - y^2|$$
answered Jan 17 at 20:23
RRLRRL
53.7k52675
53.7k52675
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077450%2fproving-uniform-continuity-of-fx-sqrt1-x2-on-1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
There is a general result that you can use here: any continuous function on a compact interval is uniformly continuous.
$endgroup$
– GReyes
Jan 17 at 20:12