Integration by parts in proof of special case of Ehrenfest's theorem












1












$begingroup$


Our physics professor proved a special case of Ehrenfest's theorem, or to be more precise:
$$mlangle xrangle = langle prangle,$$
where we have used the definition:
$$langle xrangle = int_{mathbb{R}}psi^* (x,t), x,psi(x,t), dx,$$
and $psi$ is a normalized wave function.



In the proof at some point he writes the following:
$$begin{align}begin{aligned} imath frac { hbar } { 2 m } int _ { mathbb { R } } d x, x, Psi ( x , t ) ^ { * } &frac { partial ^ { 2 } } { partial x ^ { 2 } } Psi ( x , t ) = imath frac { hbar } { 2 m } left[ x Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right] _ { x = - infty } ^ { x = infty } \ & - imath frac { hbar } { 2 m } int _ { mathbb { R } } d x left( Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) + x frac { partial } { partial x } Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right). end{aligned}end{align}$$
I really don't understand how the integration by parts works here and would be really happy if someone could explain this.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
    $endgroup$
    – Lorenzo Quarisa
    Jan 17 at 20:44










  • $begingroup$
    What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
    $endgroup$
    – Mark Viola
    Jan 17 at 21:17


















1












$begingroup$


Our physics professor proved a special case of Ehrenfest's theorem, or to be more precise:
$$mlangle xrangle = langle prangle,$$
where we have used the definition:
$$langle xrangle = int_{mathbb{R}}psi^* (x,t), x,psi(x,t), dx,$$
and $psi$ is a normalized wave function.



In the proof at some point he writes the following:
$$begin{align}begin{aligned} imath frac { hbar } { 2 m } int _ { mathbb { R } } d x, x, Psi ( x , t ) ^ { * } &frac { partial ^ { 2 } } { partial x ^ { 2 } } Psi ( x , t ) = imath frac { hbar } { 2 m } left[ x Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right] _ { x = - infty } ^ { x = infty } \ & - imath frac { hbar } { 2 m } int _ { mathbb { R } } d x left( Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) + x frac { partial } { partial x } Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right). end{aligned}end{align}$$
I really don't understand how the integration by parts works here and would be really happy if someone could explain this.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
    $endgroup$
    – Lorenzo Quarisa
    Jan 17 at 20:44










  • $begingroup$
    What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
    $endgroup$
    – Mark Viola
    Jan 17 at 21:17
















1












1








1





$begingroup$


Our physics professor proved a special case of Ehrenfest's theorem, or to be more precise:
$$mlangle xrangle = langle prangle,$$
where we have used the definition:
$$langle xrangle = int_{mathbb{R}}psi^* (x,t), x,psi(x,t), dx,$$
and $psi$ is a normalized wave function.



In the proof at some point he writes the following:
$$begin{align}begin{aligned} imath frac { hbar } { 2 m } int _ { mathbb { R } } d x, x, Psi ( x , t ) ^ { * } &frac { partial ^ { 2 } } { partial x ^ { 2 } } Psi ( x , t ) = imath frac { hbar } { 2 m } left[ x Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right] _ { x = - infty } ^ { x = infty } \ & - imath frac { hbar } { 2 m } int _ { mathbb { R } } d x left( Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) + x frac { partial } { partial x } Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right). end{aligned}end{align}$$
I really don't understand how the integration by parts works here and would be really happy if someone could explain this.










share|cite|improve this question









$endgroup$




Our physics professor proved a special case of Ehrenfest's theorem, or to be more precise:
$$mlangle xrangle = langle prangle,$$
where we have used the definition:
$$langle xrangle = int_{mathbb{R}}psi^* (x,t), x,psi(x,t), dx,$$
and $psi$ is a normalized wave function.



In the proof at some point he writes the following:
$$begin{align}begin{aligned} imath frac { hbar } { 2 m } int _ { mathbb { R } } d x, x, Psi ( x , t ) ^ { * } &frac { partial ^ { 2 } } { partial x ^ { 2 } } Psi ( x , t ) = imath frac { hbar } { 2 m } left[ x Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right] _ { x = - infty } ^ { x = infty } \ & - imath frac { hbar } { 2 m } int _ { mathbb { R } } d x left( Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) + x frac { partial } { partial x } Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right). end{aligned}end{align}$$
I really don't understand how the integration by parts works here and would be really happy if someone could explain this.







integration definite-integrals physics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 17 at 20:40









Marius JaegerMarius Jaeger

61




61








  • 1




    $begingroup$
    You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
    $endgroup$
    – Lorenzo Quarisa
    Jan 17 at 20:44










  • $begingroup$
    What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
    $endgroup$
    – Mark Viola
    Jan 17 at 21:17
















  • 1




    $begingroup$
    You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
    $endgroup$
    – Lorenzo Quarisa
    Jan 17 at 20:44










  • $begingroup$
    What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
    $endgroup$
    – Mark Viola
    Jan 17 at 21:17










1




1




$begingroup$
You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
$endgroup$
– Lorenzo Quarisa
Jan 17 at 20:44




$begingroup$
You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
$endgroup$
– Lorenzo Quarisa
Jan 17 at 20:44












$begingroup$
What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
$endgroup$
– Mark Viola
Jan 17 at 21:17






$begingroup$
What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
$endgroup$
– Mark Viola
Jan 17 at 21:17












0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077489%2fintegration-by-parts-in-proof-of-special-case-of-ehrenfests-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077489%2fintegration-by-parts-in-proof-of-special-case-of-ehrenfests-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅