Integration by parts in proof of special case of Ehrenfest's theorem
$begingroup$
Our physics professor proved a special case of Ehrenfest's theorem, or to be more precise:
$$mlangle xrangle = langle prangle,$$
where we have used the definition:
$$langle xrangle = int_{mathbb{R}}psi^* (x,t), x,psi(x,t), dx,$$
and $psi$ is a normalized wave function.
In the proof at some point he writes the following:
$$begin{align}begin{aligned} imath frac { hbar } { 2 m } int _ { mathbb { R } } d x, x, Psi ( x , t ) ^ { * } &frac { partial ^ { 2 } } { partial x ^ { 2 } } Psi ( x , t ) = imath frac { hbar } { 2 m } left[ x Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right] _ { x = - infty } ^ { x = infty } \ & - imath frac { hbar } { 2 m } int _ { mathbb { R } } d x left( Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) + x frac { partial } { partial x } Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right). end{aligned}end{align}$$
I really don't understand how the integration by parts works here and would be really happy if someone could explain this.
integration definite-integrals physics
$endgroup$
add a comment |
$begingroup$
Our physics professor proved a special case of Ehrenfest's theorem, or to be more precise:
$$mlangle xrangle = langle prangle,$$
where we have used the definition:
$$langle xrangle = int_{mathbb{R}}psi^* (x,t), x,psi(x,t), dx,$$
and $psi$ is a normalized wave function.
In the proof at some point he writes the following:
$$begin{align}begin{aligned} imath frac { hbar } { 2 m } int _ { mathbb { R } } d x, x, Psi ( x , t ) ^ { * } &frac { partial ^ { 2 } } { partial x ^ { 2 } } Psi ( x , t ) = imath frac { hbar } { 2 m } left[ x Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right] _ { x = - infty } ^ { x = infty } \ & - imath frac { hbar } { 2 m } int _ { mathbb { R } } d x left( Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) + x frac { partial } { partial x } Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right). end{aligned}end{align}$$
I really don't understand how the integration by parts works here and would be really happy if someone could explain this.
integration definite-integrals physics
$endgroup$
1
$begingroup$
You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
$endgroup$
– Lorenzo Quarisa
Jan 17 at 20:44
$begingroup$
What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
$endgroup$
– Mark Viola
Jan 17 at 21:17
add a comment |
$begingroup$
Our physics professor proved a special case of Ehrenfest's theorem, or to be more precise:
$$mlangle xrangle = langle prangle,$$
where we have used the definition:
$$langle xrangle = int_{mathbb{R}}psi^* (x,t), x,psi(x,t), dx,$$
and $psi$ is a normalized wave function.
In the proof at some point he writes the following:
$$begin{align}begin{aligned} imath frac { hbar } { 2 m } int _ { mathbb { R } } d x, x, Psi ( x , t ) ^ { * } &frac { partial ^ { 2 } } { partial x ^ { 2 } } Psi ( x , t ) = imath frac { hbar } { 2 m } left[ x Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right] _ { x = - infty } ^ { x = infty } \ & - imath frac { hbar } { 2 m } int _ { mathbb { R } } d x left( Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) + x frac { partial } { partial x } Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right). end{aligned}end{align}$$
I really don't understand how the integration by parts works here and would be really happy if someone could explain this.
integration definite-integrals physics
$endgroup$
Our physics professor proved a special case of Ehrenfest's theorem, or to be more precise:
$$mlangle xrangle = langle prangle,$$
where we have used the definition:
$$langle xrangle = int_{mathbb{R}}psi^* (x,t), x,psi(x,t), dx,$$
and $psi$ is a normalized wave function.
In the proof at some point he writes the following:
$$begin{align}begin{aligned} imath frac { hbar } { 2 m } int _ { mathbb { R } } d x, x, Psi ( x , t ) ^ { * } &frac { partial ^ { 2 } } { partial x ^ { 2 } } Psi ( x , t ) = imath frac { hbar } { 2 m } left[ x Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right] _ { x = - infty } ^ { x = infty } \ & - imath frac { hbar } { 2 m } int _ { mathbb { R } } d x left( Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) + x frac { partial } { partial x } Psi ( x , t ) ^ { * } frac { partial } { partial x } Psi ( x , t ) right). end{aligned}end{align}$$
I really don't understand how the integration by parts works here and would be really happy if someone could explain this.
integration definite-integrals physics
integration definite-integrals physics
asked Jan 17 at 20:40
Marius JaegerMarius Jaeger
61
61
1
$begingroup$
You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
$endgroup$
– Lorenzo Quarisa
Jan 17 at 20:44
$begingroup$
What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
$endgroup$
– Mark Viola
Jan 17 at 21:17
add a comment |
1
$begingroup$
You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
$endgroup$
– Lorenzo Quarisa
Jan 17 at 20:44
$begingroup$
What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
$endgroup$
– Mark Viola
Jan 17 at 21:17
1
1
$begingroup$
You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
$endgroup$
– Lorenzo Quarisa
Jan 17 at 20:44
$begingroup$
You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
$endgroup$
– Lorenzo Quarisa
Jan 17 at 20:44
$begingroup$
What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
$endgroup$
– Mark Viola
Jan 17 at 21:17
$begingroup$
What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
$endgroup$
– Mark Viola
Jan 17 at 21:17
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077489%2fintegration-by-parts-in-proof-of-special-case-of-ehrenfests-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077489%2fintegration-by-parts-in-proof-of-special-case-of-ehrenfests-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You integrate $frac{partial^2 }{partial x^2}psi(x,t)$ and differentiate $xpsi (x,t)^*$ with respect to $x$.
$endgroup$
– Lorenzo Quarisa
Jan 17 at 20:44
$begingroup$
What do you not understand about integrating by parts here? Let $u=xPsi^{*}(x,t)$ and $v=Psi_x(x,t)$. Also use the fact that the wave function is of Compact Support.
$endgroup$
– Mark Viola
Jan 17 at 21:17