Why $|z^5|-2^5=0$ has $infty$ solutions in $mathbb{C}$?
0
$begingroup$
Given $z=x+iy$ a complex number, I can't understand why $|z^5|-2^5=0$ has infinite solutions in $mathbb{C}$ .
complex-numbers
share | cite | improve this question
asked Jan 16 at 18:15
Kevin Kevin
162 11
$endgroup$
$begingroup$
For any $thetain[0, 2pi/5),$ the complex number $z=2(costheta+isintheta)$ satisfies your equation.
$endgroup$