How to show isometry of the space through plane?
$begingroup$
I am totally new to the isometries of the plane and space.
I have to prove that the map
$$R(vec{x})=vec{x}-2(vec{x}bullethat{n})hat{n}$$ from $R^{3}$ to $R^{3}$ is isometry of the space $R^{3}.$
The attempt what I have made is, I took two points $vec{x_{1}}$ and $vec{x_{2}}$ from $R^{3}$. The image of these two after the given map
$$R(vec{x_{1}})=vec{x_{1}}-2(vec{x_{1}}bullethat{n})hat{n}$$ and
$$R(vec{x_{2}})=vec{x_{2}}-2(vec{x_{2}}bullethat{n})hat{n}$$
Now I have to show that $R$ will be isometry if
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=||vec{x_{1}}-vec{x_{1}}||^{2}$$
SInce $R(vec{x_{1}})-R(vec{x_{2}})=(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}$
Now
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>$$
I get confused, how to proceed step by step to reach that
$$big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>=||vec{x_{1}}-vec{x_{2}}||^{2}$$
$$Rightarrow~ bigg<vec{x_{1}}-vec{x_{2}},vec{x_{1}}-vec{x_{2}}bigg>-4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>+4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}bigg<hat{n},hat{n}bigg>$$
Am I right, how to show that $$4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>=4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}$$
isometry vector-space-isomorphism
$endgroup$
add a comment |
$begingroup$
I am totally new to the isometries of the plane and space.
I have to prove that the map
$$R(vec{x})=vec{x}-2(vec{x}bullethat{n})hat{n}$$ from $R^{3}$ to $R^{3}$ is isometry of the space $R^{3}.$
The attempt what I have made is, I took two points $vec{x_{1}}$ and $vec{x_{2}}$ from $R^{3}$. The image of these two after the given map
$$R(vec{x_{1}})=vec{x_{1}}-2(vec{x_{1}}bullethat{n})hat{n}$$ and
$$R(vec{x_{2}})=vec{x_{2}}-2(vec{x_{2}}bullethat{n})hat{n}$$
Now I have to show that $R$ will be isometry if
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=||vec{x_{1}}-vec{x_{1}}||^{2}$$
SInce $R(vec{x_{1}})-R(vec{x_{2}})=(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}$
Now
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>$$
I get confused, how to proceed step by step to reach that
$$big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>=||vec{x_{1}}-vec{x_{2}}||^{2}$$
$$Rightarrow~ bigg<vec{x_{1}}-vec{x_{2}},vec{x_{1}}-vec{x_{2}}bigg>-4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>+4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}bigg<hat{n},hat{n}bigg>$$
Am I right, how to show that $$4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>=4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}$$
isometry vector-space-isomorphism
$endgroup$
$begingroup$
Use bilinearity of the scalar product.
$endgroup$
– amd
Jan 16 at 17:56
$begingroup$
@amd How can you explain sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:00
$begingroup$
Recall the basic properties of inner products.
$endgroup$
– amd
Jan 16 at 18:02
$begingroup$
@amd can you explain in answer sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:03
add a comment |
$begingroup$
I am totally new to the isometries of the plane and space.
I have to prove that the map
$$R(vec{x})=vec{x}-2(vec{x}bullethat{n})hat{n}$$ from $R^{3}$ to $R^{3}$ is isometry of the space $R^{3}.$
The attempt what I have made is, I took two points $vec{x_{1}}$ and $vec{x_{2}}$ from $R^{3}$. The image of these two after the given map
$$R(vec{x_{1}})=vec{x_{1}}-2(vec{x_{1}}bullethat{n})hat{n}$$ and
$$R(vec{x_{2}})=vec{x_{2}}-2(vec{x_{2}}bullethat{n})hat{n}$$
Now I have to show that $R$ will be isometry if
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=||vec{x_{1}}-vec{x_{1}}||^{2}$$
SInce $R(vec{x_{1}})-R(vec{x_{2}})=(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}$
Now
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>$$
I get confused, how to proceed step by step to reach that
$$big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>=||vec{x_{1}}-vec{x_{2}}||^{2}$$
$$Rightarrow~ bigg<vec{x_{1}}-vec{x_{2}},vec{x_{1}}-vec{x_{2}}bigg>-4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>+4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}bigg<hat{n},hat{n}bigg>$$
Am I right, how to show that $$4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>=4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}$$
isometry vector-space-isomorphism
$endgroup$
I am totally new to the isometries of the plane and space.
I have to prove that the map
$$R(vec{x})=vec{x}-2(vec{x}bullethat{n})hat{n}$$ from $R^{3}$ to $R^{3}$ is isometry of the space $R^{3}.$
The attempt what I have made is, I took two points $vec{x_{1}}$ and $vec{x_{2}}$ from $R^{3}$. The image of these two after the given map
$$R(vec{x_{1}})=vec{x_{1}}-2(vec{x_{1}}bullethat{n})hat{n}$$ and
$$R(vec{x_{2}})=vec{x_{2}}-2(vec{x_{2}}bullethat{n})hat{n}$$
Now I have to show that $R$ will be isometry if
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=||vec{x_{1}}-vec{x_{1}}||^{2}$$
SInce $R(vec{x_{1}})-R(vec{x_{2}})=(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}$
Now
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>$$
I get confused, how to proceed step by step to reach that
$$big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>=||vec{x_{1}}-vec{x_{2}}||^{2}$$
$$Rightarrow~ bigg<vec{x_{1}}-vec{x_{2}},vec{x_{1}}-vec{x_{2}}bigg>-4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>+4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}bigg<hat{n},hat{n}bigg>$$
Am I right, how to show that $$4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>=4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}$$
isometry vector-space-isomorphism
isometry vector-space-isomorphism
edited Jan 17 at 13:28
Noor Aslam
asked Jan 16 at 17:36
Noor AslamNoor Aslam
16012
16012
$begingroup$
Use bilinearity of the scalar product.
$endgroup$
– amd
Jan 16 at 17:56
$begingroup$
@amd How can you explain sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:00
$begingroup$
Recall the basic properties of inner products.
$endgroup$
– amd
Jan 16 at 18:02
$begingroup$
@amd can you explain in answer sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:03
add a comment |
$begingroup$
Use bilinearity of the scalar product.
$endgroup$
– amd
Jan 16 at 17:56
$begingroup$
@amd How can you explain sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:00
$begingroup$
Recall the basic properties of inner products.
$endgroup$
– amd
Jan 16 at 18:02
$begingroup$
@amd can you explain in answer sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:03
$begingroup$
Use bilinearity of the scalar product.
$endgroup$
– amd
Jan 16 at 17:56
$begingroup$
Use bilinearity of the scalar product.
$endgroup$
– amd
Jan 16 at 17:56
$begingroup$
@amd How can you explain sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:00
$begingroup$
@amd How can you explain sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:00
$begingroup$
Recall the basic properties of inner products.
$endgroup$
– amd
Jan 16 at 18:02
$begingroup$
Recall the basic properties of inner products.
$endgroup$
– amd
Jan 16 at 18:02
$begingroup$
@amd can you explain in answer sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:03
$begingroup$
@amd can you explain in answer sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:03
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.
$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$
$endgroup$
$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17
$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076031%2fhow-to-show-isometry-of-the-space-through-plane%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.
$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$
$endgroup$
$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17
$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08
add a comment |
$begingroup$
Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.
$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$
$endgroup$
$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17
$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08
add a comment |
$begingroup$
Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.
$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$
$endgroup$
Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.
$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$
answered Jan 17 at 14:25
Paul FrostPaul Frost
12.5k31035
12.5k31035
$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17
$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08
add a comment |
$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17
$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08
$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17
$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17
$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08
$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076031%2fhow-to-show-isometry-of-the-space-through-plane%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Use bilinearity of the scalar product.
$endgroup$
– amd
Jan 16 at 17:56
$begingroup$
@amd How can you explain sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:00
$begingroup$
Recall the basic properties of inner products.
$endgroup$
– amd
Jan 16 at 18:02
$begingroup$
@amd can you explain in answer sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:03