How to show isometry of the space through plane?












0












$begingroup$


I am totally new to the isometries of the plane and space.
I have to prove that the map
$$R(vec{x})=vec{x}-2(vec{x}bullethat{n})hat{n}$$ from $R^{3}$ to $R^{3}$ is isometry of the space $R^{3}.$
The attempt what I have made is, I took two points $vec{x_{1}}$ and $vec{x_{2}}$ from $R^{3}$. The image of these two after the given map
$$R(vec{x_{1}})=vec{x_{1}}-2(vec{x_{1}}bullethat{n})hat{n}$$ and
$$R(vec{x_{2}})=vec{x_{2}}-2(vec{x_{2}}bullethat{n})hat{n}$$
Now I have to show that $R$ will be isometry if
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=||vec{x_{1}}-vec{x_{1}}||^{2}$$
SInce $R(vec{x_{1}})-R(vec{x_{2}})=(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}$
Now
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>$$
I get confused, how to proceed step by step to reach that
$$big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>=||vec{x_{1}}-vec{x_{2}}||^{2}$$
$$Rightarrow~ bigg<vec{x_{1}}-vec{x_{2}},vec{x_{1}}-vec{x_{2}}bigg>-4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>+4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}bigg<hat{n},hat{n}bigg>$$
Am I right, how to show that $$4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>=4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Use bilinearity of the scalar product.
    $endgroup$
    – amd
    Jan 16 at 17:56










  • $begingroup$
    @amd How can you explain sir!
    $endgroup$
    – Noor Aslam
    Jan 16 at 18:00










  • $begingroup$
    Recall the basic properties of inner products.
    $endgroup$
    – amd
    Jan 16 at 18:02










  • $begingroup$
    @amd can you explain in answer sir!
    $endgroup$
    – Noor Aslam
    Jan 16 at 18:03
















0












$begingroup$


I am totally new to the isometries of the plane and space.
I have to prove that the map
$$R(vec{x})=vec{x}-2(vec{x}bullethat{n})hat{n}$$ from $R^{3}$ to $R^{3}$ is isometry of the space $R^{3}.$
The attempt what I have made is, I took two points $vec{x_{1}}$ and $vec{x_{2}}$ from $R^{3}$. The image of these two after the given map
$$R(vec{x_{1}})=vec{x_{1}}-2(vec{x_{1}}bullethat{n})hat{n}$$ and
$$R(vec{x_{2}})=vec{x_{2}}-2(vec{x_{2}}bullethat{n})hat{n}$$
Now I have to show that $R$ will be isometry if
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=||vec{x_{1}}-vec{x_{1}}||^{2}$$
SInce $R(vec{x_{1}})-R(vec{x_{2}})=(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}$
Now
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>$$
I get confused, how to proceed step by step to reach that
$$big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>=||vec{x_{1}}-vec{x_{2}}||^{2}$$
$$Rightarrow~ bigg<vec{x_{1}}-vec{x_{2}},vec{x_{1}}-vec{x_{2}}bigg>-4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>+4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}bigg<hat{n},hat{n}bigg>$$
Am I right, how to show that $$4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>=4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Use bilinearity of the scalar product.
    $endgroup$
    – amd
    Jan 16 at 17:56










  • $begingroup$
    @amd How can you explain sir!
    $endgroup$
    – Noor Aslam
    Jan 16 at 18:00










  • $begingroup$
    Recall the basic properties of inner products.
    $endgroup$
    – amd
    Jan 16 at 18:02










  • $begingroup$
    @amd can you explain in answer sir!
    $endgroup$
    – Noor Aslam
    Jan 16 at 18:03














0












0








0





$begingroup$


I am totally new to the isometries of the plane and space.
I have to prove that the map
$$R(vec{x})=vec{x}-2(vec{x}bullethat{n})hat{n}$$ from $R^{3}$ to $R^{3}$ is isometry of the space $R^{3}.$
The attempt what I have made is, I took two points $vec{x_{1}}$ and $vec{x_{2}}$ from $R^{3}$. The image of these two after the given map
$$R(vec{x_{1}})=vec{x_{1}}-2(vec{x_{1}}bullethat{n})hat{n}$$ and
$$R(vec{x_{2}})=vec{x_{2}}-2(vec{x_{2}}bullethat{n})hat{n}$$
Now I have to show that $R$ will be isometry if
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=||vec{x_{1}}-vec{x_{1}}||^{2}$$
SInce $R(vec{x_{1}})-R(vec{x_{2}})=(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}$
Now
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>$$
I get confused, how to proceed step by step to reach that
$$big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>=||vec{x_{1}}-vec{x_{2}}||^{2}$$
$$Rightarrow~ bigg<vec{x_{1}}-vec{x_{2}},vec{x_{1}}-vec{x_{2}}bigg>-4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>+4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}bigg<hat{n},hat{n}bigg>$$
Am I right, how to show that $$4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>=4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}$$










share|cite|improve this question











$endgroup$




I am totally new to the isometries of the plane and space.
I have to prove that the map
$$R(vec{x})=vec{x}-2(vec{x}bullethat{n})hat{n}$$ from $R^{3}$ to $R^{3}$ is isometry of the space $R^{3}.$
The attempt what I have made is, I took two points $vec{x_{1}}$ and $vec{x_{2}}$ from $R^{3}$. The image of these two after the given map
$$R(vec{x_{1}})=vec{x_{1}}-2(vec{x_{1}}bullethat{n})hat{n}$$ and
$$R(vec{x_{2}})=vec{x_{2}}-2(vec{x_{2}}bullethat{n})hat{n}$$
Now I have to show that $R$ will be isometry if
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=||vec{x_{1}}-vec{x_{1}}||^{2}$$
SInce $R(vec{x_{1}})-R(vec{x_{2}})=(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}$
Now
$$||R(vec{x_{1}})-R(vec{x_{2}})||^{2}=big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>$$
I get confused, how to proceed step by step to reach that
$$big<(vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}, (vec{x_{1}}-vec{x_{2}})-2big((vec{x_{1}}-vec{x_{2}})bullethat{n}big)hat{n}big>=||vec{x_{1}}-vec{x_{2}}||^{2}$$
$$Rightarrow~ bigg<vec{x_{1}}-vec{x_{2}},vec{x_{1}}-vec{x_{2}}bigg>-4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>+4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}bigg<hat{n},hat{n}bigg>$$
Am I right, how to show that $$4big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg<vec{x_{1}}-vec{x_{2}},hat{n}bigg>=4bigg(big[(vec{x_{1}}-vec{x_{2}})bullethat{n}big]bigg)^{2}$$







isometry vector-space-isomorphism






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 13:28







Noor Aslam

















asked Jan 16 at 17:36









Noor AslamNoor Aslam

16012




16012












  • $begingroup$
    Use bilinearity of the scalar product.
    $endgroup$
    – amd
    Jan 16 at 17:56










  • $begingroup$
    @amd How can you explain sir!
    $endgroup$
    – Noor Aslam
    Jan 16 at 18:00










  • $begingroup$
    Recall the basic properties of inner products.
    $endgroup$
    – amd
    Jan 16 at 18:02










  • $begingroup$
    @amd can you explain in answer sir!
    $endgroup$
    – Noor Aslam
    Jan 16 at 18:03


















  • $begingroup$
    Use bilinearity of the scalar product.
    $endgroup$
    – amd
    Jan 16 at 17:56










  • $begingroup$
    @amd How can you explain sir!
    $endgroup$
    – Noor Aslam
    Jan 16 at 18:00










  • $begingroup$
    Recall the basic properties of inner products.
    $endgroup$
    – amd
    Jan 16 at 18:02










  • $begingroup$
    @amd can you explain in answer sir!
    $endgroup$
    – Noor Aslam
    Jan 16 at 18:03
















$begingroup$
Use bilinearity of the scalar product.
$endgroup$
– amd
Jan 16 at 17:56




$begingroup$
Use bilinearity of the scalar product.
$endgroup$
– amd
Jan 16 at 17:56












$begingroup$
@amd How can you explain sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:00




$begingroup$
@amd How can you explain sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:00












$begingroup$
Recall the basic properties of inner products.
$endgroup$
– amd
Jan 16 at 18:02




$begingroup$
Recall the basic properties of inner products.
$endgroup$
– amd
Jan 16 at 18:02












$begingroup$
@amd can you explain in answer sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:03




$begingroup$
@amd can you explain in answer sir!
$endgroup$
– Noor Aslam
Jan 16 at 18:03










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.



$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
    $endgroup$
    – Noor Aslam
    Jan 17 at 15:17










  • $begingroup$
    I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
    $endgroup$
    – Paul Frost
    Jan 17 at 16:08












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076031%2fhow-to-show-isometry-of-the-space-through-plane%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.



$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
    $endgroup$
    – Noor Aslam
    Jan 17 at 15:17










  • $begingroup$
    I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
    $endgroup$
    – Paul Frost
    Jan 17 at 16:08
















0












$begingroup$

Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.



$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
    $endgroup$
    – Noor Aslam
    Jan 17 at 15:17










  • $begingroup$
    I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
    $endgroup$
    – Paul Frost
    Jan 17 at 16:08














0












0








0





$begingroup$

Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.



$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$






share|cite|improve this answer









$endgroup$



Let us write $x$ instead of $vec{x}$ and $n$ instead of $hat{n}$. Moreover, $bullet$ denotes the usual dot product (scalar product) on Euclidean space $mathbb{R}^3$. In other words, $a bullet b = langle a, b rangle$ which is the alternative notation used in your question.



$R$ is a linear map because
$$R(x + y) = x + y - 2langle x + y, n rangle n = x + y - 2(langle x, n rangle + langle y, n rangle )n \= x - 2langle x, n rangle n + y - 2langle y, n rangle n = R(x) + R(y)$$
and
$$R(alpha x) = alpha x - 2langle alpha x, n rangle n = alpha x - 2alpha langle x, n rangle n = alpha R(x) .$$
It therefore suffices to show $lVert R(x) rVert =lVert x rVert$.
Simplifying your computations we get
$$lVert R(x) rVert^2 = langle R(x), R(x) rangle = langle x - 2langle x, n rangle n, x - 2langle x, n rangle n rangle \ = langle x, x rangle - 2langle x, n rangle langle n, x rangle - 2langle x, n rangle langle x, n rangle + 4langle x, n rangle^2 langle n, n rangle \ = lVert x rVert^2 - 4 langle x, n rangle ^2 + 4 langle x, n rangle ^2 lVert n rVert^2 .$$
You did not mention the assumption $lVert n rVert = 1$. But in that case you see that
$$lVert R(x) rVert^2 = lVert x rVert^2 .$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 17 at 14:25









Paul FrostPaul Frost

12.5k31035




12.5k31035












  • $begingroup$
    Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
    $endgroup$
    – Noor Aslam
    Jan 17 at 15:17










  • $begingroup$
    I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
    $endgroup$
    – Paul Frost
    Jan 17 at 16:08


















  • $begingroup$
    Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
    $endgroup$
    – Noor Aslam
    Jan 17 at 15:17










  • $begingroup$
    I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
    $endgroup$
    – Paul Frost
    Jan 17 at 16:08
















$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17




$begingroup$
Sir I have put hat on $n$ represents that $n$ is unit vector! SIr Thank You so much
$endgroup$
– Noor Aslam
Jan 17 at 15:17












$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08




$begingroup$
I see! But for future questions I recommend to explain precisely everything concerning notation. Otherwise you are in danger that some readers will not understand it correctly.
$endgroup$
– Paul Frost
Jan 17 at 16:08


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076031%2fhow-to-show-isometry-of-the-space-through-plane%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg