Using cylindrical coordinates, find the volume of the region $D ={y^2+z^2le5+x^2,4x^2+y^2+z^2le25}$
$begingroup$
I want to calculate this volume region, using cylindrical coordinates:
$$D={y^2+z^2le5+x^2,4x^2+y^2+z^2le25}$$
So, I have a hyperboloid and an ellipsoid.
Is it correct to calculate the volume like this:
$$2int_{0}^{2pi}int_{0}^{3}int_{2}^{frac12sqrt{25-r^2}}rdxdrdtheta + 2int_{0}^{2pi}int_{0}^{2}int_{0}^{sqrt{5+x^2}}rdrdxdtheta$$
Is there a more efficient method ?
calculus integration multivariable-calculus definite-integrals
$endgroup$
add a comment |
$begingroup$
I want to calculate this volume region, using cylindrical coordinates:
$$D={y^2+z^2le5+x^2,4x^2+y^2+z^2le25}$$
So, I have a hyperboloid and an ellipsoid.
Is it correct to calculate the volume like this:
$$2int_{0}^{2pi}int_{0}^{3}int_{2}^{frac12sqrt{25-r^2}}rdxdrdtheta + 2int_{0}^{2pi}int_{0}^{2}int_{0}^{sqrt{5+x^2}}rdrdxdtheta$$
Is there a more efficient method ?
calculus integration multivariable-calculus definite-integrals
$endgroup$
add a comment |
$begingroup$
I want to calculate this volume region, using cylindrical coordinates:
$$D={y^2+z^2le5+x^2,4x^2+y^2+z^2le25}$$
So, I have a hyperboloid and an ellipsoid.
Is it correct to calculate the volume like this:
$$2int_{0}^{2pi}int_{0}^{3}int_{2}^{frac12sqrt{25-r^2}}rdxdrdtheta + 2int_{0}^{2pi}int_{0}^{2}int_{0}^{sqrt{5+x^2}}rdrdxdtheta$$
Is there a more efficient method ?
calculus integration multivariable-calculus definite-integrals
$endgroup$
I want to calculate this volume region, using cylindrical coordinates:
$$D={y^2+z^2le5+x^2,4x^2+y^2+z^2le25}$$
So, I have a hyperboloid and an ellipsoid.
Is it correct to calculate the volume like this:
$$2int_{0}^{2pi}int_{0}^{3}int_{2}^{frac12sqrt{25-r^2}}rdxdrdtheta + 2int_{0}^{2pi}int_{0}^{2}int_{0}^{sqrt{5+x^2}}rdrdxdtheta$$
Is there a more efficient method ?
calculus integration multivariable-calculus definite-integrals
calculus integration multivariable-calculus definite-integrals
edited Jan 19 at 15:28
Blue
49.5k870158
49.5k870158
asked Jan 16 at 17:42
NPLSNPLS
7812
7812
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
(I don't understand your first integral. The second is o.k.)
Your domain $D$ is a diabolo with the $x$-axis as axis of rotation. It is the intersection of the interior of a one-sheet hyperboloid with an ellipsoid. For the computation we put $y^2+z^2=:rho^2$. The admissible values for $rho$ depend on the variable $x$. When $xgeq0$ we have
$$0leqrholeq rho(x):=sqrt{5+x^2}quad(0leq xleq2),qquad 0leqrholeqrho(x):=sqrt{25-4x^2}quadleft(2leq xleq{5over2}right) .$$
We now cut up $D$ into "infinitesimal discs" of radius $rho(x)$ using planes orthogonal to the $x$-axis. These discs have volume $pirho^2(x)>dx$. It follows that
$${rm vol}(D)=2piint_0^2rho^2(x)>dx+2piint_2^{5/2}rho^2(x)>dx .$$
$endgroup$
$begingroup$
I got $30pi$ I think It's right!
$endgroup$
– NPLS
Jan 19 at 15:40
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076041%2fusing-cylindrical-coordinates-find-the-volume-of-the-region-d-y2z2-le5x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
(I don't understand your first integral. The second is o.k.)
Your domain $D$ is a diabolo with the $x$-axis as axis of rotation. It is the intersection of the interior of a one-sheet hyperboloid with an ellipsoid. For the computation we put $y^2+z^2=:rho^2$. The admissible values for $rho$ depend on the variable $x$. When $xgeq0$ we have
$$0leqrholeq rho(x):=sqrt{5+x^2}quad(0leq xleq2),qquad 0leqrholeqrho(x):=sqrt{25-4x^2}quadleft(2leq xleq{5over2}right) .$$
We now cut up $D$ into "infinitesimal discs" of radius $rho(x)$ using planes orthogonal to the $x$-axis. These discs have volume $pirho^2(x)>dx$. It follows that
$${rm vol}(D)=2piint_0^2rho^2(x)>dx+2piint_2^{5/2}rho^2(x)>dx .$$
$endgroup$
$begingroup$
I got $30pi$ I think It's right!
$endgroup$
– NPLS
Jan 19 at 15:40
add a comment |
$begingroup$
(I don't understand your first integral. The second is o.k.)
Your domain $D$ is a diabolo with the $x$-axis as axis of rotation. It is the intersection of the interior of a one-sheet hyperboloid with an ellipsoid. For the computation we put $y^2+z^2=:rho^2$. The admissible values for $rho$ depend on the variable $x$. When $xgeq0$ we have
$$0leqrholeq rho(x):=sqrt{5+x^2}quad(0leq xleq2),qquad 0leqrholeqrho(x):=sqrt{25-4x^2}quadleft(2leq xleq{5over2}right) .$$
We now cut up $D$ into "infinitesimal discs" of radius $rho(x)$ using planes orthogonal to the $x$-axis. These discs have volume $pirho^2(x)>dx$. It follows that
$${rm vol}(D)=2piint_0^2rho^2(x)>dx+2piint_2^{5/2}rho^2(x)>dx .$$
$endgroup$
$begingroup$
I got $30pi$ I think It's right!
$endgroup$
– NPLS
Jan 19 at 15:40
add a comment |
$begingroup$
(I don't understand your first integral. The second is o.k.)
Your domain $D$ is a diabolo with the $x$-axis as axis of rotation. It is the intersection of the interior of a one-sheet hyperboloid with an ellipsoid. For the computation we put $y^2+z^2=:rho^2$. The admissible values for $rho$ depend on the variable $x$. When $xgeq0$ we have
$$0leqrholeq rho(x):=sqrt{5+x^2}quad(0leq xleq2),qquad 0leqrholeqrho(x):=sqrt{25-4x^2}quadleft(2leq xleq{5over2}right) .$$
We now cut up $D$ into "infinitesimal discs" of radius $rho(x)$ using planes orthogonal to the $x$-axis. These discs have volume $pirho^2(x)>dx$. It follows that
$${rm vol}(D)=2piint_0^2rho^2(x)>dx+2piint_2^{5/2}rho^2(x)>dx .$$
$endgroup$
(I don't understand your first integral. The second is o.k.)
Your domain $D$ is a diabolo with the $x$-axis as axis of rotation. It is the intersection of the interior of a one-sheet hyperboloid with an ellipsoid. For the computation we put $y^2+z^2=:rho^2$. The admissible values for $rho$ depend on the variable $x$. When $xgeq0$ we have
$$0leqrholeq rho(x):=sqrt{5+x^2}quad(0leq xleq2),qquad 0leqrholeqrho(x):=sqrt{25-4x^2}quadleft(2leq xleq{5over2}right) .$$
We now cut up $D$ into "infinitesimal discs" of radius $rho(x)$ using planes orthogonal to the $x$-axis. These discs have volume $pirho^2(x)>dx$. It follows that
$${rm vol}(D)=2piint_0^2rho^2(x)>dx+2piint_2^{5/2}rho^2(x)>dx .$$
edited Jan 19 at 15:40
answered Jan 19 at 15:23
Christian BlatterChristian Blatter
176k8115328
176k8115328
$begingroup$
I got $30pi$ I think It's right!
$endgroup$
– NPLS
Jan 19 at 15:40
add a comment |
$begingroup$
I got $30pi$ I think It's right!
$endgroup$
– NPLS
Jan 19 at 15:40
$begingroup$
I got $30pi$ I think It's right!
$endgroup$
– NPLS
Jan 19 at 15:40
$begingroup$
I got $30pi$ I think It's right!
$endgroup$
– NPLS
Jan 19 at 15:40
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076041%2fusing-cylindrical-coordinates-find-the-volume-of-the-region-d-y2z2-le5x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown