How can I use the moment generating function to prove independence between $X_s$ and $X_t-X_s$
$begingroup$
Consider a process $X_t$ with the dynamics $$dX_t=f(t)dW_t$$
where $W_t$ is Brownian motion and $X_0=0$. Define $sigma^2(t)=int_0^tf^2(u)du$
Clearly $X_s$ and $X_t-X_s$ for $t>s$ are independent (due to the properties of Brownian motion) and $X_tsim (0,sigma^2(t))$
My question is: Can I use the moment generating function to prove the independence between $X_s$ and $X_t-X_s$?
Hence computing $E[exp( a_1X_s+a_2(X_t-X_s) )]$ and use the result to prove independence
probability stochastic-processes stochastic-calculus
$endgroup$
add a comment |
$begingroup$
Consider a process $X_t$ with the dynamics $$dX_t=f(t)dW_t$$
where $W_t$ is Brownian motion and $X_0=0$. Define $sigma^2(t)=int_0^tf^2(u)du$
Clearly $X_s$ and $X_t-X_s$ for $t>s$ are independent (due to the properties of Brownian motion) and $X_tsim (0,sigma^2(t))$
My question is: Can I use the moment generating function to prove the independence between $X_s$ and $X_t-X_s$?
Hence computing $E[exp( a_1X_s+a_2(X_t-X_s) )]$ and use the result to prove independence
probability stochastic-processes stochastic-calculus
$endgroup$
$begingroup$
thanks! I have now corrected.
$endgroup$
– econmajorr
Jan 16 at 18:35
add a comment |
$begingroup$
Consider a process $X_t$ with the dynamics $$dX_t=f(t)dW_t$$
where $W_t$ is Brownian motion and $X_0=0$. Define $sigma^2(t)=int_0^tf^2(u)du$
Clearly $X_s$ and $X_t-X_s$ for $t>s$ are independent (due to the properties of Brownian motion) and $X_tsim (0,sigma^2(t))$
My question is: Can I use the moment generating function to prove the independence between $X_s$ and $X_t-X_s$?
Hence computing $E[exp( a_1X_s+a_2(X_t-X_s) )]$ and use the result to prove independence
probability stochastic-processes stochastic-calculus
$endgroup$
Consider a process $X_t$ with the dynamics $$dX_t=f(t)dW_t$$
where $W_t$ is Brownian motion and $X_0=0$. Define $sigma^2(t)=int_0^tf^2(u)du$
Clearly $X_s$ and $X_t-X_s$ for $t>s$ are independent (due to the properties of Brownian motion) and $X_tsim (0,sigma^2(t))$
My question is: Can I use the moment generating function to prove the independence between $X_s$ and $X_t-X_s$?
Hence computing $E[exp( a_1X_s+a_2(X_t-X_s) )]$ and use the result to prove independence
probability stochastic-processes stochastic-calculus
probability stochastic-processes stochastic-calculus
edited Jan 16 at 18:35
econmajorr
asked Jan 16 at 17:44
econmajorreconmajorr
104
104
$begingroup$
thanks! I have now corrected.
$endgroup$
– econmajorr
Jan 16 at 18:35
add a comment |
$begingroup$
thanks! I have now corrected.
$endgroup$
– econmajorr
Jan 16 at 18:35
$begingroup$
thanks! I have now corrected.
$endgroup$
– econmajorr
Jan 16 at 18:35
$begingroup$
thanks! I have now corrected.
$endgroup$
– econmajorr
Jan 16 at 18:35
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.
Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
$$
E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
$$
which is equivalent to the statement that for all $Ainmathcal F_s$,
$$
E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
$$
Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
$$
e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
$$
Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
$$
E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
$$
Multiply $1_Ae^{-iuX_s}$ and take expectations:
$$
E(1_Ae^{iu(X_t-X_s)})
=P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
$$
Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
$$
z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
$$
whose unique solution is
$$
z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076043%2fhow-can-i-use-the-moment-generating-function-to-prove-independence-between-x-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.
Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
$$
E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
$$
which is equivalent to the statement that for all $Ainmathcal F_s$,
$$
E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
$$
Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
$$
e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
$$
Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
$$
E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
$$
Multiply $1_Ae^{-iuX_s}$ and take expectations:
$$
E(1_Ae^{iu(X_t-X_s)})
=P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
$$
Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
$$
z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
$$
whose unique solution is
$$
z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
$$
$endgroup$
add a comment |
$begingroup$
Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.
Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
$$
E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
$$
which is equivalent to the statement that for all $Ainmathcal F_s$,
$$
E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
$$
Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
$$
e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
$$
Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
$$
E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
$$
Multiply $1_Ae^{-iuX_s}$ and take expectations:
$$
E(1_Ae^{iu(X_t-X_s)})
=P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
$$
Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
$$
z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
$$
whose unique solution is
$$
z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
$$
$endgroup$
add a comment |
$begingroup$
Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.
Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
$$
E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
$$
which is equivalent to the statement that for all $Ainmathcal F_s$,
$$
E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
$$
Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
$$
e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
$$
Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
$$
E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
$$
Multiply $1_Ae^{-iuX_s}$ and take expectations:
$$
E(1_Ae^{iu(X_t-X_s)})
=P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
$$
Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
$$
z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
$$
whose unique solution is
$$
z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
$$
$endgroup$
Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.
Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
$$
E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
$$
which is equivalent to the statement that for all $Ainmathcal F_s$,
$$
E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
$$
Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
$$
e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
$$
Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
$$
E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
$$
Multiply $1_Ae^{-iuX_s}$ and take expectations:
$$
E(1_Ae^{iu(X_t-X_s)})
=P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
$$
Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
$$
z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
$$
whose unique solution is
$$
z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
$$
answered Jan 17 at 8:33
AddSupAddSup
5201319
5201319
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076043%2fhow-can-i-use-the-moment-generating-function-to-prove-independence-between-x-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
thanks! I have now corrected.
$endgroup$
– econmajorr
Jan 16 at 18:35