How can I use the moment generating function to prove independence between $X_s$ and $X_t-X_s$












0












$begingroup$


Consider a process $X_t$ with the dynamics $$dX_t=f(t)dW_t$$
where $W_t$ is Brownian motion and $X_0=0$. Define $sigma^2(t)=int_0^tf^2(u)du$



Clearly $X_s$ and $X_t-X_s$ for $t>s$ are independent (due to the properties of Brownian motion) and $X_tsim (0,sigma^2(t))$



My question is: Can I use the moment generating function to prove the independence between $X_s$ and $X_t-X_s$?



Hence computing $E[exp( a_1X_s+a_2(X_t-X_s) )]$ and use the result to prove independence










share|cite|improve this question











$endgroup$












  • $begingroup$
    thanks! I have now corrected.
    $endgroup$
    – econmajorr
    Jan 16 at 18:35
















0












$begingroup$


Consider a process $X_t$ with the dynamics $$dX_t=f(t)dW_t$$
where $W_t$ is Brownian motion and $X_0=0$. Define $sigma^2(t)=int_0^tf^2(u)du$



Clearly $X_s$ and $X_t-X_s$ for $t>s$ are independent (due to the properties of Brownian motion) and $X_tsim (0,sigma^2(t))$



My question is: Can I use the moment generating function to prove the independence between $X_s$ and $X_t-X_s$?



Hence computing $E[exp( a_1X_s+a_2(X_t-X_s) )]$ and use the result to prove independence










share|cite|improve this question











$endgroup$












  • $begingroup$
    thanks! I have now corrected.
    $endgroup$
    – econmajorr
    Jan 16 at 18:35














0












0








0





$begingroup$


Consider a process $X_t$ with the dynamics $$dX_t=f(t)dW_t$$
where $W_t$ is Brownian motion and $X_0=0$. Define $sigma^2(t)=int_0^tf^2(u)du$



Clearly $X_s$ and $X_t-X_s$ for $t>s$ are independent (due to the properties of Brownian motion) and $X_tsim (0,sigma^2(t))$



My question is: Can I use the moment generating function to prove the independence between $X_s$ and $X_t-X_s$?



Hence computing $E[exp( a_1X_s+a_2(X_t-X_s) )]$ and use the result to prove independence










share|cite|improve this question











$endgroup$




Consider a process $X_t$ with the dynamics $$dX_t=f(t)dW_t$$
where $W_t$ is Brownian motion and $X_0=0$. Define $sigma^2(t)=int_0^tf^2(u)du$



Clearly $X_s$ and $X_t-X_s$ for $t>s$ are independent (due to the properties of Brownian motion) and $X_tsim (0,sigma^2(t))$



My question is: Can I use the moment generating function to prove the independence between $X_s$ and $X_t-X_s$?



Hence computing $E[exp( a_1X_s+a_2(X_t-X_s) )]$ and use the result to prove independence







probability stochastic-processes stochastic-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 18:35







econmajorr

















asked Jan 16 at 17:44









econmajorreconmajorr

104




104












  • $begingroup$
    thanks! I have now corrected.
    $endgroup$
    – econmajorr
    Jan 16 at 18:35


















  • $begingroup$
    thanks! I have now corrected.
    $endgroup$
    – econmajorr
    Jan 16 at 18:35
















$begingroup$
thanks! I have now corrected.
$endgroup$
– econmajorr
Jan 16 at 18:35




$begingroup$
thanks! I have now corrected.
$endgroup$
– econmajorr
Jan 16 at 18:35










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.



Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
$$
E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
$$

which is equivalent to the statement that for all $Ainmathcal F_s$,
$$
E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
$$

Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
$$
e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
$$

Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
$$
E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
$$

Multiply $1_Ae^{-iuX_s}$ and take expectations:
$$
E(1_Ae^{iu(X_t-X_s)})
=P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
$$

Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
$$
z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
$$

whose unique solution is
$$
z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076043%2fhow-can-i-use-the-moment-generating-function-to-prove-independence-between-x-s%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.



    Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
    $$
    E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
    $$

    which is equivalent to the statement that for all $Ainmathcal F_s$,
    $$
    E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
    $$

    Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
    $$
    e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
    $$

    Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
    $$
    E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
    $$

    Multiply $1_Ae^{-iuX_s}$ and take expectations:
    $$
    E(1_Ae^{iu(X_t-X_s)})
    =P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
    $$

    Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
    $$
    z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
    $$

    whose unique solution is
    $$
    z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
    $$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.



      Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
      $$
      E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
      $$

      which is equivalent to the statement that for all $Ainmathcal F_s$,
      $$
      E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
      $$

      Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
      $$
      e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
      $$

      Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
      $$
      E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
      $$

      Multiply $1_Ae^{-iuX_s}$ and take expectations:
      $$
      E(1_Ae^{iu(X_t-X_s)})
      =P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
      $$

      Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
      $$
      z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
      $$

      whose unique solution is
      $$
      z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
      $$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.



        Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
        $$
        E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
        $$

        which is equivalent to the statement that for all $Ainmathcal F_s$,
        $$
        E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
        $$

        Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
        $$
        e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
        $$

        Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
        $$
        E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
        $$

        Multiply $1_Ae^{-iuX_s}$ and take expectations:
        $$
        E(1_Ae^{iu(X_t-X_s)})
        =P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
        $$

        Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
        $$
        z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
        $$

        whose unique solution is
        $$
        z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
        $$






        share|cite|improve this answer









        $endgroup$



        Let ${f^n}$ be a sequence of simple functions converging to $f$ and $X^n_ttriangleq int_0^tf^n(s)dW_s$. Then for each $n$, $X^n_s$ and $X^n_t-X^n_s$ are clearly independent; and we get the independence of the limits $X_s$ and $X_t-X_s$ from this result. Proof of the last result, as you can see, is likely to rely on characteristic functions as you desire.



        Or you can repeat a step in Levy's characterization of BM (e.g., Karatzas and Shreve, Theorem 3.3.16). It suffices to show
        $$
        E(e^{iu(X_t-X_s)}|mathcal F_s)=e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}
        $$

        which is equivalent to the statement that for all $Ainmathcal F_s$,
        $$
        E(1_Ae^{iu(X_t-X_s)})=P(A)e^{-frac{1}{2}u^2int_s^tf^2(tau)dtau}.
        $$

        Now, apply Ito's lemma to $xmapsto e^{iux}$ to obtain
        $$
        e^{iuX_t}=e^{iuX_s}+iuint_s^te^{iuX_tau}f(tau)dW_tau-frac{1}{2}u^2int_s^te^{iuX_tau}f^2(tau)dtau.
        $$

        Under a mild regularity condition on $f$ (e.g., $int_0^tf^2(tau)dtau<infty$ for all $t$), the stochastic integral is a martingale, so
        $$
        E(e^{iuX_t}|mathcal F_s)=e^{iuX_s}-frac{1}{2}u^2int_s^tE(e^{iuX_tau}|mathcal F_s)f^2(tau)dtau.
        $$

        Multiply $1_Ae^{-iuX_s}$ and take expectations:
        $$
        E(1_Ae^{iu(X_t-X_s)})
        =P(A)-frac{1}{2}u^2int_s^tE(1_Ae^{iu(X_tau-X_s)})f^2(tau)dtau.
        $$

        Let $z(t)=E(1_Ae^{iu(X_t-X_s)})$. We then have
        $$
        z(t)=P(A)-frac{1}{2}u^2int_s^tz(tau)f^2(tau)dtau,quad tge s,
        $$

        whose unique solution is
        $$
        z(t)=P(A)e^{-frac{1}{2}u^2int_s^tf(tau)^2dtau}.
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 17 at 8:33









        AddSupAddSup

        5201319




        5201319






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076043%2fhow-can-i-use-the-moment-generating-function-to-prove-independence-between-x-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            File:DeusFollowingSea.jpg