Find vector flux of $v=(yz,y^2z, yz^2)$ through the surface of the cylinder $x^2+y^2=1, 0 leq z leq 1$












3














I'm given the following vector field : $v=(yz,y^2z, yz^2)$ and I need to find its flux through the cylinder $x^2+y^2=1, 0 leq z leq 1$. I don't have solutions to this exercise, so I don't know if my results are correct.





The divergence of $v$ is simply $4yz$. So if we set up our integral in cylindrical coordinates, we get $$int_{0}^{1}int_{0}^{2pi}int_{0}^{1}4zrsin(theta) r drdtheta dz$$. Now, if we evaluate this, we get $0$ because $int_{0}^{2pi}sin(theta)=0$. So the result will simply be $0$ even if the original vector field could seem a bit intimidating. We could also use a symmetry argument : integrating the variable $y$, which is an odd function, over a symmetric interval, here a circle, will always yield $0$.



Also, the integrals over the two "surface circles", where $z=0$ and $z=1$, also yield $0$ because for the first one, we integrate over $0$ and for the second, we have $4y$ which is again odd over a symmetric interval.






Do you agree with this ? Thanks for your help !

Edit : as was pointed out in the comments, if we use the divergence theorem, we don't need to evaluate over surfaces, and thus the integrals over the circles where z=0 resp. z=1 are not required at all. This step would be required if we proceed without using the divergence theorem. In this case, we would also need to evaluate over the circular surface of the cylinder.










share|cite|improve this question




















  • 1




    I agree with everything above.
    – Doug M
    Dec 28 '18 at 19:42










  • @DougM Ah, okay. This was quick haha.
    – Poujh
    Dec 28 '18 at 19:43












  • Why do you have $4y$ on the last line?
    – Andrei
    Dec 28 '18 at 21:30










  • @Andrei It’s 4yz with z= 1 (the circle on top of the cylinder)
    – Poujh
    Dec 28 '18 at 22:28






  • 2




    @Poujh You either do volume integral, so then you don't integrate the divergence over the surface, or you do a surface integral, and then the flux on top surface is $yz^2$ with $z=1$, as in my reply below. Be careful not to mix the two approaches.
    – Andrei
    Dec 28 '18 at 22:36
















3














I'm given the following vector field : $v=(yz,y^2z, yz^2)$ and I need to find its flux through the cylinder $x^2+y^2=1, 0 leq z leq 1$. I don't have solutions to this exercise, so I don't know if my results are correct.





The divergence of $v$ is simply $4yz$. So if we set up our integral in cylindrical coordinates, we get $$int_{0}^{1}int_{0}^{2pi}int_{0}^{1}4zrsin(theta) r drdtheta dz$$. Now, if we evaluate this, we get $0$ because $int_{0}^{2pi}sin(theta)=0$. So the result will simply be $0$ even if the original vector field could seem a bit intimidating. We could also use a symmetry argument : integrating the variable $y$, which is an odd function, over a symmetric interval, here a circle, will always yield $0$.



Also, the integrals over the two "surface circles", where $z=0$ and $z=1$, also yield $0$ because for the first one, we integrate over $0$ and for the second, we have $4y$ which is again odd over a symmetric interval.






Do you agree with this ? Thanks for your help !

Edit : as was pointed out in the comments, if we use the divergence theorem, we don't need to evaluate over surfaces, and thus the integrals over the circles where z=0 resp. z=1 are not required at all. This step would be required if we proceed without using the divergence theorem. In this case, we would also need to evaluate over the circular surface of the cylinder.










share|cite|improve this question




















  • 1




    I agree with everything above.
    – Doug M
    Dec 28 '18 at 19:42










  • @DougM Ah, okay. This was quick haha.
    – Poujh
    Dec 28 '18 at 19:43












  • Why do you have $4y$ on the last line?
    – Andrei
    Dec 28 '18 at 21:30










  • @Andrei It’s 4yz with z= 1 (the circle on top of the cylinder)
    – Poujh
    Dec 28 '18 at 22:28






  • 2




    @Poujh You either do volume integral, so then you don't integrate the divergence over the surface, or you do a surface integral, and then the flux on top surface is $yz^2$ with $z=1$, as in my reply below. Be careful not to mix the two approaches.
    – Andrei
    Dec 28 '18 at 22:36














3












3








3







I'm given the following vector field : $v=(yz,y^2z, yz^2)$ and I need to find its flux through the cylinder $x^2+y^2=1, 0 leq z leq 1$. I don't have solutions to this exercise, so I don't know if my results are correct.





The divergence of $v$ is simply $4yz$. So if we set up our integral in cylindrical coordinates, we get $$int_{0}^{1}int_{0}^{2pi}int_{0}^{1}4zrsin(theta) r drdtheta dz$$. Now, if we evaluate this, we get $0$ because $int_{0}^{2pi}sin(theta)=0$. So the result will simply be $0$ even if the original vector field could seem a bit intimidating. We could also use a symmetry argument : integrating the variable $y$, which is an odd function, over a symmetric interval, here a circle, will always yield $0$.



Also, the integrals over the two "surface circles", where $z=0$ and $z=1$, also yield $0$ because for the first one, we integrate over $0$ and for the second, we have $4y$ which is again odd over a symmetric interval.






Do you agree with this ? Thanks for your help !

Edit : as was pointed out in the comments, if we use the divergence theorem, we don't need to evaluate over surfaces, and thus the integrals over the circles where z=0 resp. z=1 are not required at all. This step would be required if we proceed without using the divergence theorem. In this case, we would also need to evaluate over the circular surface of the cylinder.










share|cite|improve this question















I'm given the following vector field : $v=(yz,y^2z, yz^2)$ and I need to find its flux through the cylinder $x^2+y^2=1, 0 leq z leq 1$. I don't have solutions to this exercise, so I don't know if my results are correct.





The divergence of $v$ is simply $4yz$. So if we set up our integral in cylindrical coordinates, we get $$int_{0}^{1}int_{0}^{2pi}int_{0}^{1}4zrsin(theta) r drdtheta dz$$. Now, if we evaluate this, we get $0$ because $int_{0}^{2pi}sin(theta)=0$. So the result will simply be $0$ even if the original vector field could seem a bit intimidating. We could also use a symmetry argument : integrating the variable $y$, which is an odd function, over a symmetric interval, here a circle, will always yield $0$.



Also, the integrals over the two "surface circles", where $z=0$ and $z=1$, also yield $0$ because for the first one, we integrate over $0$ and for the second, we have $4y$ which is again odd over a symmetric interval.






Do you agree with this ? Thanks for your help !

Edit : as was pointed out in the comments, if we use the divergence theorem, we don't need to evaluate over surfaces, and thus the integrals over the circles where z=0 resp. z=1 are not required at all. This step would be required if we proceed without using the divergence theorem. In this case, we would also need to evaluate over the circular surface of the cylinder.







real-analysis multivariable-calculus vector-analysis vector-fields divergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







Poujh

















asked Dec 28 '18 at 19:39









PoujhPoujh

547416




547416








  • 1




    I agree with everything above.
    – Doug M
    Dec 28 '18 at 19:42










  • @DougM Ah, okay. This was quick haha.
    – Poujh
    Dec 28 '18 at 19:43












  • Why do you have $4y$ on the last line?
    – Andrei
    Dec 28 '18 at 21:30










  • @Andrei It’s 4yz with z= 1 (the circle on top of the cylinder)
    – Poujh
    Dec 28 '18 at 22:28






  • 2




    @Poujh You either do volume integral, so then you don't integrate the divergence over the surface, or you do a surface integral, and then the flux on top surface is $yz^2$ with $z=1$, as in my reply below. Be careful not to mix the two approaches.
    – Andrei
    Dec 28 '18 at 22:36














  • 1




    I agree with everything above.
    – Doug M
    Dec 28 '18 at 19:42










  • @DougM Ah, okay. This was quick haha.
    – Poujh
    Dec 28 '18 at 19:43












  • Why do you have $4y$ on the last line?
    – Andrei
    Dec 28 '18 at 21:30










  • @Andrei It’s 4yz with z= 1 (the circle on top of the cylinder)
    – Poujh
    Dec 28 '18 at 22:28






  • 2




    @Poujh You either do volume integral, so then you don't integrate the divergence over the surface, or you do a surface integral, and then the flux on top surface is $yz^2$ with $z=1$, as in my reply below. Be careful not to mix the two approaches.
    – Andrei
    Dec 28 '18 at 22:36








1




1




I agree with everything above.
– Doug M
Dec 28 '18 at 19:42




I agree with everything above.
– Doug M
Dec 28 '18 at 19:42












@DougM Ah, okay. This was quick haha.
– Poujh
Dec 28 '18 at 19:43






@DougM Ah, okay. This was quick haha.
– Poujh
Dec 28 '18 at 19:43














Why do you have $4y$ on the last line?
– Andrei
Dec 28 '18 at 21:30




Why do you have $4y$ on the last line?
– Andrei
Dec 28 '18 at 21:30












@Andrei It’s 4yz with z= 1 (the circle on top of the cylinder)
– Poujh
Dec 28 '18 at 22:28




@Andrei It’s 4yz with z= 1 (the circle on top of the cylinder)
– Poujh
Dec 28 '18 at 22:28




2




2




@Poujh You either do volume integral, so then you don't integrate the divergence over the surface, or you do a surface integral, and then the flux on top surface is $yz^2$ with $z=1$, as in my reply below. Be careful not to mix the two approaches.
– Andrei
Dec 28 '18 at 22:36




@Poujh You either do volume integral, so then you don't integrate the divergence over the surface, or you do a surface integral, and then the flux on top surface is $yz^2$ with $z=1$, as in my reply below. Be careful not to mix the two approaches.
– Andrei
Dec 28 '18 at 22:36










1 Answer
1






active

oldest

votes


















3














You can get the same answer even without the divergence theorem. The normal to the bottom surface is $(0,0,-1)$, so the flux is $$Phi_B=int_B(0,0,-1)cdot(0,0,0)dS=0$$ The normal to the top ($z=1$) is $(0,0,1)$, so the flux is $$Phi_T=int_T(0,0,1)cdot(y,y^2,y)dS=int_TydS=0$$
In the last step I've relied on symmetry.



If you draw a picture of a circle with radius $1$, for any point $(x,y)$ on the circle, the normal to the circle is $(x,y)$, so in the case of the cylinder, the normal to the side is $(x,y,0)$. Then the flux through the side is $$Phi_S=int_S(x,y,0)cdot(yz,y^2z,yz^2)dS=int_S(xyz+y^3z)dS=int_0^1zdzint_0^{2pi}dtheta(sinthetacostheta+sin^3theta)$$
It's trivial to show that the last integral is zero as well. So the total flux is zero, as you have found from the divergence theorem.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055227%2ffind-vector-flux-of-v-yz-y2z-yz2-through-the-surface-of-the-cylinder-x2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3














    You can get the same answer even without the divergence theorem. The normal to the bottom surface is $(0,0,-1)$, so the flux is $$Phi_B=int_B(0,0,-1)cdot(0,0,0)dS=0$$ The normal to the top ($z=1$) is $(0,0,1)$, so the flux is $$Phi_T=int_T(0,0,1)cdot(y,y^2,y)dS=int_TydS=0$$
    In the last step I've relied on symmetry.



    If you draw a picture of a circle with radius $1$, for any point $(x,y)$ on the circle, the normal to the circle is $(x,y)$, so in the case of the cylinder, the normal to the side is $(x,y,0)$. Then the flux through the side is $$Phi_S=int_S(x,y,0)cdot(yz,y^2z,yz^2)dS=int_S(xyz+y^3z)dS=int_0^1zdzint_0^{2pi}dtheta(sinthetacostheta+sin^3theta)$$
    It's trivial to show that the last integral is zero as well. So the total flux is zero, as you have found from the divergence theorem.






    share|cite|improve this answer


























      3














      You can get the same answer even without the divergence theorem. The normal to the bottom surface is $(0,0,-1)$, so the flux is $$Phi_B=int_B(0,0,-1)cdot(0,0,0)dS=0$$ The normal to the top ($z=1$) is $(0,0,1)$, so the flux is $$Phi_T=int_T(0,0,1)cdot(y,y^2,y)dS=int_TydS=0$$
      In the last step I've relied on symmetry.



      If you draw a picture of a circle with radius $1$, for any point $(x,y)$ on the circle, the normal to the circle is $(x,y)$, so in the case of the cylinder, the normal to the side is $(x,y,0)$. Then the flux through the side is $$Phi_S=int_S(x,y,0)cdot(yz,y^2z,yz^2)dS=int_S(xyz+y^3z)dS=int_0^1zdzint_0^{2pi}dtheta(sinthetacostheta+sin^3theta)$$
      It's trivial to show that the last integral is zero as well. So the total flux is zero, as you have found from the divergence theorem.






      share|cite|improve this answer
























        3












        3








        3






        You can get the same answer even without the divergence theorem. The normal to the bottom surface is $(0,0,-1)$, so the flux is $$Phi_B=int_B(0,0,-1)cdot(0,0,0)dS=0$$ The normal to the top ($z=1$) is $(0,0,1)$, so the flux is $$Phi_T=int_T(0,0,1)cdot(y,y^2,y)dS=int_TydS=0$$
        In the last step I've relied on symmetry.



        If you draw a picture of a circle with radius $1$, for any point $(x,y)$ on the circle, the normal to the circle is $(x,y)$, so in the case of the cylinder, the normal to the side is $(x,y,0)$. Then the flux through the side is $$Phi_S=int_S(x,y,0)cdot(yz,y^2z,yz^2)dS=int_S(xyz+y^3z)dS=int_0^1zdzint_0^{2pi}dtheta(sinthetacostheta+sin^3theta)$$
        It's trivial to show that the last integral is zero as well. So the total flux is zero, as you have found from the divergence theorem.






        share|cite|improve this answer












        You can get the same answer even without the divergence theorem. The normal to the bottom surface is $(0,0,-1)$, so the flux is $$Phi_B=int_B(0,0,-1)cdot(0,0,0)dS=0$$ The normal to the top ($z=1$) is $(0,0,1)$, so the flux is $$Phi_T=int_T(0,0,1)cdot(y,y^2,y)dS=int_TydS=0$$
        In the last step I've relied on symmetry.



        If you draw a picture of a circle with radius $1$, for any point $(x,y)$ on the circle, the normal to the circle is $(x,y)$, so in the case of the cylinder, the normal to the side is $(x,y,0)$. Then the flux through the side is $$Phi_S=int_S(x,y,0)cdot(yz,y^2z,yz^2)dS=int_S(xyz+y^3z)dS=int_0^1zdzint_0^{2pi}dtheta(sinthetacostheta+sin^3theta)$$
        It's trivial to show that the last integral is zero as well. So the total flux is zero, as you have found from the divergence theorem.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 28 '18 at 22:04









        AndreiAndrei

        11.5k21026




        11.5k21026






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055227%2ffind-vector-flux-of-v-yz-y2z-yz2-through-the-surface-of-the-cylinder-x2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            張江高科駅