Show that $e^{frac{-hbar}{2}partial_{a}partial_{b}}e^{frac{-ab}{hbar}}=2e^{frac{-2ab}{hbar}}$












1












$begingroup$


I think this question could be answered by only using mathematics (it relates to physics). Where, $partial_{x}f$ is denoted as partial derivative of $f$ w.r.t $x$, and first exponential term behaves like operator at some sense.



My idea is expanding both sides into power series form (Taylor series).

LHS is
$$sum_{n=0}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}$$
Expand the first sum to calculate derivative, it will be:
$$sum_{k=0}^{infty}frac{1}{2^{k}k!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{(l+k)!}{(l!)^{2}}$$
While, RHS is
$$2sum_{n=0}^{infty}frac{1}{n!}left(frac{-2ab}{hbar}right)^n$$
And I don't see if it is right. Or, the considered equation is not even right. If the equation is correct (by mean "equation"), is there any way to prove it?



Originally, this equation is from a physics paper by A. C. Hirshfeld



It is equation 5.20. In the paper, $a=a$ and $bar{a}=b$.



EDIT
Below is what I have done:
$$sum_{n}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-h}{2}partial_{a}partial_{b}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+\
+left(frac{-hbar}{2}right)^{2}partial_{a}^{2}partial_{b}^{2}frac{1}{2!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+...$$

$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-1}b^{l-1}frac{l^{2}}{l!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-2}b^{l-2}frac{l^{2}(l-1)^2}{l!}+...$$

$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)left(frac{-1}{hbar}right)^{l-1}a^{l-1}b^{l-1}frac{l}{(l-1)!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{2}left(frac{-1}{hbar}right)^{l-2}a^{l-2}b^{l-2}frac{l(l-1)}{(l-2)!}+...$$

$$=sum_{k=0}^{infty}frac{1}{2^{k}}frac{1}{k!}sum_{l=0}^{infty}left(frac{-1}{hbar}right)^{l}a^{l}b^{l}frac{(l+k)!}{l!^{2}}$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
    $endgroup$
    – J.G.
    Jan 12 at 13:07










  • $begingroup$
    I don't know, but I checked, there is no mistake. I added what I have done.
    $endgroup$
    – Duong H.D Hoang
    Jan 13 at 6:31
















1












$begingroup$


I think this question could be answered by only using mathematics (it relates to physics). Where, $partial_{x}f$ is denoted as partial derivative of $f$ w.r.t $x$, and first exponential term behaves like operator at some sense.



My idea is expanding both sides into power series form (Taylor series).

LHS is
$$sum_{n=0}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}$$
Expand the first sum to calculate derivative, it will be:
$$sum_{k=0}^{infty}frac{1}{2^{k}k!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{(l+k)!}{(l!)^{2}}$$
While, RHS is
$$2sum_{n=0}^{infty}frac{1}{n!}left(frac{-2ab}{hbar}right)^n$$
And I don't see if it is right. Or, the considered equation is not even right. If the equation is correct (by mean "equation"), is there any way to prove it?



Originally, this equation is from a physics paper by A. C. Hirshfeld



It is equation 5.20. In the paper, $a=a$ and $bar{a}=b$.



EDIT
Below is what I have done:
$$sum_{n}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-h}{2}partial_{a}partial_{b}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+\
+left(frac{-hbar}{2}right)^{2}partial_{a}^{2}partial_{b}^{2}frac{1}{2!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+...$$

$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-1}b^{l-1}frac{l^{2}}{l!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-2}b^{l-2}frac{l^{2}(l-1)^2}{l!}+...$$

$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)left(frac{-1}{hbar}right)^{l-1}a^{l-1}b^{l-1}frac{l}{(l-1)!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{2}left(frac{-1}{hbar}right)^{l-2}a^{l-2}b^{l-2}frac{l(l-1)}{(l-2)!}+...$$

$$=sum_{k=0}^{infty}frac{1}{2^{k}}frac{1}{k!}sum_{l=0}^{infty}left(frac{-1}{hbar}right)^{l}a^{l}b^{l}frac{(l+k)!}{l!^{2}}$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
    $endgroup$
    – J.G.
    Jan 12 at 13:07










  • $begingroup$
    I don't know, but I checked, there is no mistake. I added what I have done.
    $endgroup$
    – Duong H.D Hoang
    Jan 13 at 6:31














1












1








1


0



$begingroup$


I think this question could be answered by only using mathematics (it relates to physics). Where, $partial_{x}f$ is denoted as partial derivative of $f$ w.r.t $x$, and first exponential term behaves like operator at some sense.



My idea is expanding both sides into power series form (Taylor series).

LHS is
$$sum_{n=0}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}$$
Expand the first sum to calculate derivative, it will be:
$$sum_{k=0}^{infty}frac{1}{2^{k}k!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{(l+k)!}{(l!)^{2}}$$
While, RHS is
$$2sum_{n=0}^{infty}frac{1}{n!}left(frac{-2ab}{hbar}right)^n$$
And I don't see if it is right. Or, the considered equation is not even right. If the equation is correct (by mean "equation"), is there any way to prove it?



Originally, this equation is from a physics paper by A. C. Hirshfeld



It is equation 5.20. In the paper, $a=a$ and $bar{a}=b$.



EDIT
Below is what I have done:
$$sum_{n}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-h}{2}partial_{a}partial_{b}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+\
+left(frac{-hbar}{2}right)^{2}partial_{a}^{2}partial_{b}^{2}frac{1}{2!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+...$$

$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-1}b^{l-1}frac{l^{2}}{l!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-2}b^{l-2}frac{l^{2}(l-1)^2}{l!}+...$$

$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)left(frac{-1}{hbar}right)^{l-1}a^{l-1}b^{l-1}frac{l}{(l-1)!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{2}left(frac{-1}{hbar}right)^{l-2}a^{l-2}b^{l-2}frac{l(l-1)}{(l-2)!}+...$$

$$=sum_{k=0}^{infty}frac{1}{2^{k}}frac{1}{k!}sum_{l=0}^{infty}left(frac{-1}{hbar}right)^{l}a^{l}b^{l}frac{(l+k)!}{l!^{2}}$$










share|cite|improve this question











$endgroup$




I think this question could be answered by only using mathematics (it relates to physics). Where, $partial_{x}f$ is denoted as partial derivative of $f$ w.r.t $x$, and first exponential term behaves like operator at some sense.



My idea is expanding both sides into power series form (Taylor series).

LHS is
$$sum_{n=0}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}$$
Expand the first sum to calculate derivative, it will be:
$$sum_{k=0}^{infty}frac{1}{2^{k}k!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{(l+k)!}{(l!)^{2}}$$
While, RHS is
$$2sum_{n=0}^{infty}frac{1}{n!}left(frac{-2ab}{hbar}right)^n$$
And I don't see if it is right. Or, the considered equation is not even right. If the equation is correct (by mean "equation"), is there any way to prove it?



Originally, this equation is from a physics paper by A. C. Hirshfeld



It is equation 5.20. In the paper, $a=a$ and $bar{a}=b$.



EDIT
Below is what I have done:
$$sum_{n}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-h}{2}partial_{a}partial_{b}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+\
+left(frac{-hbar}{2}right)^{2}partial_{a}^{2}partial_{b}^{2}frac{1}{2!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+...$$

$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-1}b^{l-1}frac{l^{2}}{l!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-2}b^{l-2}frac{l^{2}(l-1)^2}{l!}+...$$

$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)left(frac{-1}{hbar}right)^{l-1}a^{l-1}b^{l-1}frac{l}{(l-1)!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{2}left(frac{-1}{hbar}right)^{l-2}a^{l-2}b^{l-2}frac{l(l-1)}{(l-2)!}+...$$

$$=sum_{k=0}^{infty}frac{1}{2^{k}}frac{1}{k!}sum_{l=0}^{infty}left(frac{-1}{hbar}right)^{l}a^{l}b^{l}frac{(l+k)!}{l!^{2}}$$







power-series formal-power-series deformation-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 6:28







Duong H.D Hoang

















asked Jan 12 at 11:47









Duong H.D HoangDuong H.D Hoang

556




556








  • 1




    $begingroup$
    It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
    $endgroup$
    – J.G.
    Jan 12 at 13:07










  • $begingroup$
    I don't know, but I checked, there is no mistake. I added what I have done.
    $endgroup$
    – Duong H.D Hoang
    Jan 13 at 6:31














  • 1




    $begingroup$
    It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
    $endgroup$
    – J.G.
    Jan 12 at 13:07










  • $begingroup$
    I don't know, but I checked, there is no mistake. I added what I have done.
    $endgroup$
    – Duong H.D Hoang
    Jan 13 at 6:31








1




1




$begingroup$
It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
$endgroup$
– J.G.
Jan 12 at 13:07




$begingroup$
It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
$endgroup$
– J.G.
Jan 12 at 13:07












$begingroup$
I don't know, but I checked, there is no mistake. I added what I have done.
$endgroup$
– Duong H.D Hoang
Jan 13 at 6:31




$begingroup$
I don't know, but I checked, there is no mistake. I added what I have done.
$endgroup$
– Duong H.D Hoang
Jan 13 at 6:31










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070821%2fshow-that-e-frac-hbar2-partial-a-partial-be-frac-ab-hbar-2e%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070821%2fshow-that-e-frac-hbar2-partial-a-partial-be-frac-ab-hbar-2e%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg