Show that $e^{frac{-hbar}{2}partial_{a}partial_{b}}e^{frac{-ab}{hbar}}=2e^{frac{-2ab}{hbar}}$
$begingroup$
I think this question could be answered by only using mathematics (it relates to physics). Where, $partial_{x}f$ is denoted as partial derivative of $f$ w.r.t $x$, and first exponential term behaves like operator at some sense.
My idea is expanding both sides into power series form (Taylor series).
LHS is
$$sum_{n=0}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}$$
Expand the first sum to calculate derivative, it will be:
$$sum_{k=0}^{infty}frac{1}{2^{k}k!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{(l+k)!}{(l!)^{2}}$$
While, RHS is
$$2sum_{n=0}^{infty}frac{1}{n!}left(frac{-2ab}{hbar}right)^n$$
And I don't see if it is right. Or, the considered equation is not even right. If the equation is correct (by mean "equation"), is there any way to prove it?
Originally, this equation is from a physics paper by A. C. Hirshfeld
It is equation 5.20. In the paper, $a=a$ and $bar{a}=b$.
EDIT
Below is what I have done:
$$sum_{n}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-h}{2}partial_{a}partial_{b}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+\
+left(frac{-hbar}{2}right)^{2}partial_{a}^{2}partial_{b}^{2}frac{1}{2!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+...$$
$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-1}b^{l-1}frac{l^{2}}{l!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-2}b^{l-2}frac{l^{2}(l-1)^2}{l!}+...$$
$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)left(frac{-1}{hbar}right)^{l-1}a^{l-1}b^{l-1}frac{l}{(l-1)!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{2}left(frac{-1}{hbar}right)^{l-2}a^{l-2}b^{l-2}frac{l(l-1)}{(l-2)!}+...$$
$$=sum_{k=0}^{infty}frac{1}{2^{k}}frac{1}{k!}sum_{l=0}^{infty}left(frac{-1}{hbar}right)^{l}a^{l}b^{l}frac{(l+k)!}{l!^{2}}$$
power-series formal-power-series deformation-theory
$endgroup$
add a comment |
$begingroup$
I think this question could be answered by only using mathematics (it relates to physics). Where, $partial_{x}f$ is denoted as partial derivative of $f$ w.r.t $x$, and first exponential term behaves like operator at some sense.
My idea is expanding both sides into power series form (Taylor series).
LHS is
$$sum_{n=0}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}$$
Expand the first sum to calculate derivative, it will be:
$$sum_{k=0}^{infty}frac{1}{2^{k}k!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{(l+k)!}{(l!)^{2}}$$
While, RHS is
$$2sum_{n=0}^{infty}frac{1}{n!}left(frac{-2ab}{hbar}right)^n$$
And I don't see if it is right. Or, the considered equation is not even right. If the equation is correct (by mean "equation"), is there any way to prove it?
Originally, this equation is from a physics paper by A. C. Hirshfeld
It is equation 5.20. In the paper, $a=a$ and $bar{a}=b$.
EDIT
Below is what I have done:
$$sum_{n}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-h}{2}partial_{a}partial_{b}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+\
+left(frac{-hbar}{2}right)^{2}partial_{a}^{2}partial_{b}^{2}frac{1}{2!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+...$$
$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-1}b^{l-1}frac{l^{2}}{l!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-2}b^{l-2}frac{l^{2}(l-1)^2}{l!}+...$$
$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)left(frac{-1}{hbar}right)^{l-1}a^{l-1}b^{l-1}frac{l}{(l-1)!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{2}left(frac{-1}{hbar}right)^{l-2}a^{l-2}b^{l-2}frac{l(l-1)}{(l-2)!}+...$$
$$=sum_{k=0}^{infty}frac{1}{2^{k}}frac{1}{k!}sum_{l=0}^{infty}left(frac{-1}{hbar}right)^{l}a^{l}b^{l}frac{(l+k)!}{l!^{2}}$$
power-series formal-power-series deformation-theory
$endgroup$
1
$begingroup$
It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
$endgroup$
– J.G.
Jan 12 at 13:07
$begingroup$
I don't know, but I checked, there is no mistake. I added what I have done.
$endgroup$
– Duong H.D Hoang
Jan 13 at 6:31
add a comment |
$begingroup$
I think this question could be answered by only using mathematics (it relates to physics). Where, $partial_{x}f$ is denoted as partial derivative of $f$ w.r.t $x$, and first exponential term behaves like operator at some sense.
My idea is expanding both sides into power series form (Taylor series).
LHS is
$$sum_{n=0}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}$$
Expand the first sum to calculate derivative, it will be:
$$sum_{k=0}^{infty}frac{1}{2^{k}k!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{(l+k)!}{(l!)^{2}}$$
While, RHS is
$$2sum_{n=0}^{infty}frac{1}{n!}left(frac{-2ab}{hbar}right)^n$$
And I don't see if it is right. Or, the considered equation is not even right. If the equation is correct (by mean "equation"), is there any way to prove it?
Originally, this equation is from a physics paper by A. C. Hirshfeld
It is equation 5.20. In the paper, $a=a$ and $bar{a}=b$.
EDIT
Below is what I have done:
$$sum_{n}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-h}{2}partial_{a}partial_{b}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+\
+left(frac{-hbar}{2}right)^{2}partial_{a}^{2}partial_{b}^{2}frac{1}{2!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+...$$
$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-1}b^{l-1}frac{l^{2}}{l!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-2}b^{l-2}frac{l^{2}(l-1)^2}{l!}+...$$
$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)left(frac{-1}{hbar}right)^{l-1}a^{l-1}b^{l-1}frac{l}{(l-1)!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{2}left(frac{-1}{hbar}right)^{l-2}a^{l-2}b^{l-2}frac{l(l-1)}{(l-2)!}+...$$
$$=sum_{k=0}^{infty}frac{1}{2^{k}}frac{1}{k!}sum_{l=0}^{infty}left(frac{-1}{hbar}right)^{l}a^{l}b^{l}frac{(l+k)!}{l!^{2}}$$
power-series formal-power-series deformation-theory
$endgroup$
I think this question could be answered by only using mathematics (it relates to physics). Where, $partial_{x}f$ is denoted as partial derivative of $f$ w.r.t $x$, and first exponential term behaves like operator at some sense.
My idea is expanding both sides into power series form (Taylor series).
LHS is
$$sum_{n=0}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}$$
Expand the first sum to calculate derivative, it will be:
$$sum_{k=0}^{infty}frac{1}{2^{k}k!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{(l+k)!}{(l!)^{2}}$$
While, RHS is
$$2sum_{n=0}^{infty}frac{1}{n!}left(frac{-2ab}{hbar}right)^n$$
And I don't see if it is right. Or, the considered equation is not even right. If the equation is correct (by mean "equation"), is there any way to prove it?
Originally, this equation is from a physics paper by A. C. Hirshfeld
It is equation 5.20. In the paper, $a=a$ and $bar{a}=b$.
EDIT
Below is what I have done:
$$sum_{n}^{infty}left(frac{-hbar}{2}right)^{n}frac{1}{n!}partial_{a}^{n}partial_{b}^{n}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-h}{2}partial_{a}partial_{b}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+\
+left(frac{-hbar}{2}right)^{2}partial_{a}^{2}partial_{b}^{2}frac{1}{2!}sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+...$$
$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-1}b^{l-1}frac{l^{2}}{l!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{l}a^{l-2}b^{l-2}frac{l^{2}(l-1)^2}{l!}+...$$
$$=sum_{l=0}^{infty}left(frac{-ab}{hbar}right)^{l}frac{1}{l!}+frac{-hbar}{2}sum_{l=1}^{infty}left(frac{-1}{hbar}right)left(frac{-1}{hbar}right)^{l-1}a^{l-1}b^{l-1}frac{l}{(l-1)!}+\
+left(frac{-hbar}{2}right)^{2}frac{1}{2!}sum_{l=2}^{infty}left(frac{-1}{hbar}right)^{2}left(frac{-1}{hbar}right)^{l-2}a^{l-2}b^{l-2}frac{l(l-1)}{(l-2)!}+...$$
$$=sum_{k=0}^{infty}frac{1}{2^{k}}frac{1}{k!}sum_{l=0}^{infty}left(frac{-1}{hbar}right)^{l}a^{l}b^{l}frac{(l+k)!}{l!^{2}}$$
power-series formal-power-series deformation-theory
power-series formal-power-series deformation-theory
edited Jan 13 at 6:28
Duong H.D Hoang
asked Jan 12 at 11:47
Duong H.D HoangDuong H.D Hoang
556
556
1
$begingroup$
It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
$endgroup$
– J.G.
Jan 12 at 13:07
$begingroup$
I don't know, but I checked, there is no mistake. I added what I have done.
$endgroup$
– Duong H.D Hoang
Jan 13 at 6:31
add a comment |
1
$begingroup$
It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
$endgroup$
– J.G.
Jan 12 at 13:07
$begingroup$
I don't know, but I checked, there is no mistake. I added what I have done.
$endgroup$
– Duong H.D Hoang
Jan 13 at 6:31
1
1
$begingroup$
It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
$endgroup$
– J.G.
Jan 12 at 13:07
$begingroup$
It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
$endgroup$
– J.G.
Jan 12 at 13:07
$begingroup$
I don't know, but I checked, there is no mistake. I added what I have done.
$endgroup$
– Duong H.D Hoang
Jan 13 at 6:31
$begingroup$
I don't know, but I checked, there is no mistake. I added what I have done.
$endgroup$
– Duong H.D Hoang
Jan 13 at 6:31
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070821%2fshow-that-e-frac-hbar2-partial-a-partial-be-frac-ab-hbar-2e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070821%2fshow-that-e-frac-hbar2-partial-a-partial-be-frac-ab-hbar-2e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It should be sufficient to combinatorially prove the $(-ab/hbar)^n/n!$ coefficient is the same in both expressions. I think you've made a mistake somewhere, because if you haven't we'd need $2^{n+1}=sum_{kge 0}frac{binom{n}{k}}{2^k}$. But by the binomial theorem, the right-hand side is $1.5^n$.
$endgroup$
– J.G.
Jan 12 at 13:07
$begingroup$
I don't know, but I checked, there is no mistake. I added what I have done.
$endgroup$
– Duong H.D Hoang
Jan 13 at 6:31