Evaluate the integral $int_{-1}^1 frac{1}{(2-x)sqrt{1-x^2}},dx$












1












$begingroup$


I started with the substitution $x=sin(theta)$ with $thetain(-frac{pi}{2},frac{pi}{2})$



And I got the integral $$int_{-pi/2}^{pi/2} frac{1}{2-sin(theta)},dtheta$$
which I am again not able to evaluate.



Even integration by parts is not working.










share|cite|improve this question











$endgroup$












  • $begingroup$
    symbolab.com/solver/step-by-step/…
    $endgroup$
    – ricky
    Dec 19 '18 at 10:06










  • $begingroup$
    I hope this helps
    $endgroup$
    – ricky
    Dec 19 '18 at 10:06
















1












$begingroup$


I started with the substitution $x=sin(theta)$ with $thetain(-frac{pi}{2},frac{pi}{2})$



And I got the integral $$int_{-pi/2}^{pi/2} frac{1}{2-sin(theta)},dtheta$$
which I am again not able to evaluate.



Even integration by parts is not working.










share|cite|improve this question











$endgroup$












  • $begingroup$
    symbolab.com/solver/step-by-step/…
    $endgroup$
    – ricky
    Dec 19 '18 at 10:06










  • $begingroup$
    I hope this helps
    $endgroup$
    – ricky
    Dec 19 '18 at 10:06














1












1








1


4



$begingroup$


I started with the substitution $x=sin(theta)$ with $thetain(-frac{pi}{2},frac{pi}{2})$



And I got the integral $$int_{-pi/2}^{pi/2} frac{1}{2-sin(theta)},dtheta$$
which I am again not able to evaluate.



Even integration by parts is not working.










share|cite|improve this question











$endgroup$




I started with the substitution $x=sin(theta)$ with $thetain(-frac{pi}{2},frac{pi}{2})$



And I got the integral $$int_{-pi/2}^{pi/2} frac{1}{2-sin(theta)},dtheta$$
which I am again not able to evaluate.



Even integration by parts is not working.







integration riemann-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 10:26









quiliup

1799




1799










asked Dec 19 '18 at 9:56









Vinay VarahabhotlaVinay Varahabhotla

537




537












  • $begingroup$
    symbolab.com/solver/step-by-step/…
    $endgroup$
    – ricky
    Dec 19 '18 at 10:06










  • $begingroup$
    I hope this helps
    $endgroup$
    – ricky
    Dec 19 '18 at 10:06


















  • $begingroup$
    symbolab.com/solver/step-by-step/…
    $endgroup$
    – ricky
    Dec 19 '18 at 10:06










  • $begingroup$
    I hope this helps
    $endgroup$
    – ricky
    Dec 19 '18 at 10:06
















$begingroup$
symbolab.com/solver/step-by-step/…
$endgroup$
– ricky
Dec 19 '18 at 10:06




$begingroup$
symbolab.com/solver/step-by-step/…
$endgroup$
– ricky
Dec 19 '18 at 10:06












$begingroup$
I hope this helps
$endgroup$
– ricky
Dec 19 '18 at 10:06




$begingroup$
I hope this helps
$endgroup$
– ricky
Dec 19 '18 at 10:06










4 Answers
4






active

oldest

votes


















4












$begingroup$

Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,



$$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$



The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,



$$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$



Putting this into our integral we have,



$$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$



Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,



$$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thx very much . Substitution is very helpful
    $endgroup$
    – Vinay Varahabhotla
    Dec 19 '18 at 10:12










  • $begingroup$
    @VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
    $endgroup$
    – clathratus
    Dec 19 '18 at 17:09



















0












$begingroup$

It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.



Not very appealing here but can be useful for other integrals of this type.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Here is a slightly different approach.



    Let
    $$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
    Enforcing a substitution of $x mapsto - x$ gives
    $$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
    Adding (1) to (2) one obtains
    $$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
    since the integrand is even between symmetric limits.



    Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
    $$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
    Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
    $$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
    Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
    begin{align}
    I &= 4 int_0^infty frac{du}{3u^2 + 4}\
    &= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
    &= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
    &= frac{pi}{sqrt{3}}.
    end{align}






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Here's a cool generalization consider the integral
      $$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
      We may preform a tangent-half-angle substitution:
      $$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
      Thus
      $$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
      Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
      $$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
      Then we complete the square in the denominator:
      $$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
      then setting $g=a-frac{b^2}a$ and preforming the substitution
      $$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
      we see that
      $$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
      Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
      $$J=frac2{sqrt{ag}}(u_2-u_1)$$
      And after a bunch of algebra
      $$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
      Which works as long as $a^2>b^2$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046228%2fevaluate-the-integral-int-11-frac12-x-sqrt1-x2-dx%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,



        $$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$



        The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,



        $$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$



        Putting this into our integral we have,



        $$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$



        Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,



        $$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          Thx very much . Substitution is very helpful
          $endgroup$
          – Vinay Varahabhotla
          Dec 19 '18 at 10:12










        • $begingroup$
          @VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
          $endgroup$
          – clathratus
          Dec 19 '18 at 17:09
















        4












        $begingroup$

        Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,



        $$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$



        The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,



        $$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$



        Putting this into our integral we have,



        $$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$



        Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,



        $$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          Thx very much . Substitution is very helpful
          $endgroup$
          – Vinay Varahabhotla
          Dec 19 '18 at 10:12










        • $begingroup$
          @VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
          $endgroup$
          – clathratus
          Dec 19 '18 at 17:09














        4












        4








        4





        $begingroup$

        Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,



        $$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$



        The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,



        $$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$



        Putting this into our integral we have,



        $$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$



        Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,



        $$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$






        share|cite|improve this answer









        $endgroup$



        Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,



        $$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$



        The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,



        $$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$



        Putting this into our integral we have,



        $$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$



        Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,



        $$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 19 '18 at 10:10









        symchdmathsymchdmath

        60817




        60817












        • $begingroup$
          Thx very much . Substitution is very helpful
          $endgroup$
          – Vinay Varahabhotla
          Dec 19 '18 at 10:12










        • $begingroup$
          @VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
          $endgroup$
          – clathratus
          Dec 19 '18 at 17:09


















        • $begingroup$
          Thx very much . Substitution is very helpful
          $endgroup$
          – Vinay Varahabhotla
          Dec 19 '18 at 10:12










        • $begingroup$
          @VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
          $endgroup$
          – clathratus
          Dec 19 '18 at 17:09
















        $begingroup$
        Thx very much . Substitution is very helpful
        $endgroup$
        – Vinay Varahabhotla
        Dec 19 '18 at 10:12




        $begingroup$
        Thx very much . Substitution is very helpful
        $endgroup$
        – Vinay Varahabhotla
        Dec 19 '18 at 10:12












        $begingroup$
        @VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
        $endgroup$
        – clathratus
        Dec 19 '18 at 17:09




        $begingroup$
        @VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
        $endgroup$
        – clathratus
        Dec 19 '18 at 17:09











        0












        $begingroup$

        It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.



        Not very appealing here but can be useful for other integrals of this type.






        share|cite|improve this answer









        $endgroup$


















          0












          $begingroup$

          It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.



          Not very appealing here but can be useful for other integrals of this type.






          share|cite|improve this answer









          $endgroup$
















            0












            0








            0





            $begingroup$

            It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.



            Not very appealing here but can be useful for other integrals of this type.






            share|cite|improve this answer









            $endgroup$



            It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.



            Not very appealing here but can be useful for other integrals of this type.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 19 '18 at 14:58









            user8277998user8277998

            1,691521




            1,691521























                0












                $begingroup$

                Here is a slightly different approach.



                Let
                $$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
                Enforcing a substitution of $x mapsto - x$ gives
                $$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
                Adding (1) to (2) one obtains
                $$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
                since the integrand is even between symmetric limits.



                Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
                $$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
                Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
                $$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
                Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
                begin{align}
                I &= 4 int_0^infty frac{du}{3u^2 + 4}\
                &= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
                &= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
                &= frac{pi}{sqrt{3}}.
                end{align}






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  Here is a slightly different approach.



                  Let
                  $$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
                  Enforcing a substitution of $x mapsto - x$ gives
                  $$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
                  Adding (1) to (2) one obtains
                  $$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
                  since the integrand is even between symmetric limits.



                  Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
                  $$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
                  Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
                  $$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
                  Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
                  begin{align}
                  I &= 4 int_0^infty frac{du}{3u^2 + 4}\
                  &= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
                  &= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
                  &= frac{pi}{sqrt{3}}.
                  end{align}






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    Here is a slightly different approach.



                    Let
                    $$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
                    Enforcing a substitution of $x mapsto - x$ gives
                    $$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
                    Adding (1) to (2) one obtains
                    $$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
                    since the integrand is even between symmetric limits.



                    Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
                    $$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
                    Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
                    $$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
                    Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
                    begin{align}
                    I &= 4 int_0^infty frac{du}{3u^2 + 4}\
                    &= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
                    &= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
                    &= frac{pi}{sqrt{3}}.
                    end{align}






                    share|cite|improve this answer









                    $endgroup$



                    Here is a slightly different approach.



                    Let
                    $$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
                    Enforcing a substitution of $x mapsto - x$ gives
                    $$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
                    Adding (1) to (2) one obtains
                    $$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
                    since the integrand is even between symmetric limits.



                    Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
                    $$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
                    Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
                    $$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
                    Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
                    begin{align}
                    I &= 4 int_0^infty frac{du}{3u^2 + 4}\
                    &= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
                    &= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
                    &= frac{pi}{sqrt{3}}.
                    end{align}







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 20 '18 at 2:53









                    omegadotomegadot

                    6,3972829




                    6,3972829























                        0












                        $begingroup$

                        Here's a cool generalization consider the integral
                        $$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
                        We may preform a tangent-half-angle substitution:
                        $$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
                        Thus
                        $$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
                        Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
                        $$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
                        Then we complete the square in the denominator:
                        $$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
                        then setting $g=a-frac{b^2}a$ and preforming the substitution
                        $$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
                        we see that
                        $$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
                        Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
                        $$J=frac2{sqrt{ag}}(u_2-u_1)$$
                        And after a bunch of algebra
                        $$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
                        Which works as long as $a^2>b^2$.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Here's a cool generalization consider the integral
                          $$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
                          We may preform a tangent-half-angle substitution:
                          $$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
                          Thus
                          $$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
                          Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
                          $$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
                          Then we complete the square in the denominator:
                          $$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
                          then setting $g=a-frac{b^2}a$ and preforming the substitution
                          $$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
                          we see that
                          $$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
                          Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
                          $$J=frac2{sqrt{ag}}(u_2-u_1)$$
                          And after a bunch of algebra
                          $$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
                          Which works as long as $a^2>b^2$.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Here's a cool generalization consider the integral
                            $$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
                            We may preform a tangent-half-angle substitution:
                            $$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
                            Thus
                            $$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
                            Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
                            $$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
                            Then we complete the square in the denominator:
                            $$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
                            then setting $g=a-frac{b^2}a$ and preforming the substitution
                            $$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
                            we see that
                            $$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
                            Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
                            $$J=frac2{sqrt{ag}}(u_2-u_1)$$
                            And after a bunch of algebra
                            $$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
                            Which works as long as $a^2>b^2$.






                            share|cite|improve this answer









                            $endgroup$



                            Here's a cool generalization consider the integral
                            $$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
                            We may preform a tangent-half-angle substitution:
                            $$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
                            Thus
                            $$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
                            Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
                            $$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
                            Then we complete the square in the denominator:
                            $$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
                            then setting $g=a-frac{b^2}a$ and preforming the substitution
                            $$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
                            we see that
                            $$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
                            Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
                            $$J=frac2{sqrt{ag}}(u_2-u_1)$$
                            And after a bunch of algebra
                            $$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
                            Which works as long as $a^2>b^2$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 12 at 4:45









                            clathratusclathratus

                            4,9501338




                            4,9501338






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046228%2fevaluate-the-integral-int-11-frac12-x-sqrt1-x2-dx%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Human spaceflight

                                Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                                File:DeusFollowingSea.jpg