Evaluate the integral $int_{-1}^1 frac{1}{(2-x)sqrt{1-x^2}},dx$
$begingroup$
I started with the substitution $x=sin(theta)$ with $thetain(-frac{pi}{2},frac{pi}{2})$
And I got the integral $$int_{-pi/2}^{pi/2} frac{1}{2-sin(theta)},dtheta$$
which I am again not able to evaluate.
Even integration by parts is not working.
integration riemann-integration
$endgroup$
add a comment |
$begingroup$
I started with the substitution $x=sin(theta)$ with $thetain(-frac{pi}{2},frac{pi}{2})$
And I got the integral $$int_{-pi/2}^{pi/2} frac{1}{2-sin(theta)},dtheta$$
which I am again not able to evaluate.
Even integration by parts is not working.
integration riemann-integration
$endgroup$
$begingroup$
symbolab.com/solver/step-by-step/…
$endgroup$
– ricky
Dec 19 '18 at 10:06
$begingroup$
I hope this helps
$endgroup$
– ricky
Dec 19 '18 at 10:06
add a comment |
$begingroup$
I started with the substitution $x=sin(theta)$ with $thetain(-frac{pi}{2},frac{pi}{2})$
And I got the integral $$int_{-pi/2}^{pi/2} frac{1}{2-sin(theta)},dtheta$$
which I am again not able to evaluate.
Even integration by parts is not working.
integration riemann-integration
$endgroup$
I started with the substitution $x=sin(theta)$ with $thetain(-frac{pi}{2},frac{pi}{2})$
And I got the integral $$int_{-pi/2}^{pi/2} frac{1}{2-sin(theta)},dtheta$$
which I am again not able to evaluate.
Even integration by parts is not working.
integration riemann-integration
integration riemann-integration
edited Dec 19 '18 at 10:26
quiliup
1799
1799
asked Dec 19 '18 at 9:56
Vinay VarahabhotlaVinay Varahabhotla
537
537
$begingroup$
symbolab.com/solver/step-by-step/…
$endgroup$
– ricky
Dec 19 '18 at 10:06
$begingroup$
I hope this helps
$endgroup$
– ricky
Dec 19 '18 at 10:06
add a comment |
$begingroup$
symbolab.com/solver/step-by-step/…
$endgroup$
– ricky
Dec 19 '18 at 10:06
$begingroup$
I hope this helps
$endgroup$
– ricky
Dec 19 '18 at 10:06
$begingroup$
symbolab.com/solver/step-by-step/…
$endgroup$
– ricky
Dec 19 '18 at 10:06
$begingroup$
symbolab.com/solver/step-by-step/…
$endgroup$
– ricky
Dec 19 '18 at 10:06
$begingroup$
I hope this helps
$endgroup$
– ricky
Dec 19 '18 at 10:06
$begingroup$
I hope this helps
$endgroup$
– ricky
Dec 19 '18 at 10:06
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,
$$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$
The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,
$$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$
Putting this into our integral we have,
$$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$
Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,
$$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$
$endgroup$
$begingroup$
Thx very much . Substitution is very helpful
$endgroup$
– Vinay Varahabhotla
Dec 19 '18 at 10:12
$begingroup$
@VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
$endgroup$
– clathratus
Dec 19 '18 at 17:09
add a comment |
$begingroup$
It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.
Not very appealing here but can be useful for other integrals of this type.
$endgroup$
add a comment |
$begingroup$
Here is a slightly different approach.
Let
$$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
Enforcing a substitution of $x mapsto - x$ gives
$$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
Adding (1) to (2) one obtains
$$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
since the integrand is even between symmetric limits.
Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
$$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
$$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
begin{align}
I &= 4 int_0^infty frac{du}{3u^2 + 4}\
&= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
&= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
&= frac{pi}{sqrt{3}}.
end{align}
$endgroup$
add a comment |
$begingroup$
Here's a cool generalization consider the integral
$$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
We may preform a tangent-half-angle substitution:
$$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
Thus
$$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
$$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
Then we complete the square in the denominator:
$$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
then setting $g=a-frac{b^2}a$ and preforming the substitution
$$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
we see that
$$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
$$J=frac2{sqrt{ag}}(u_2-u_1)$$
And after a bunch of algebra
$$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
Which works as long as $a^2>b^2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046228%2fevaluate-the-integral-int-11-frac12-x-sqrt1-x2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,
$$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$
The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,
$$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$
Putting this into our integral we have,
$$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$
Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,
$$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$
$endgroup$
$begingroup$
Thx very much . Substitution is very helpful
$endgroup$
– Vinay Varahabhotla
Dec 19 '18 at 10:12
$begingroup$
@VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
$endgroup$
– clathratus
Dec 19 '18 at 17:09
add a comment |
$begingroup$
Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,
$$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$
The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,
$$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$
Putting this into our integral we have,
$$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$
Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,
$$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$
$endgroup$
$begingroup$
Thx very much . Substitution is very helpful
$endgroup$
– Vinay Varahabhotla
Dec 19 '18 at 10:12
$begingroup$
@VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
$endgroup$
– clathratus
Dec 19 '18 at 17:09
add a comment |
$begingroup$
Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,
$$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$
The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,
$$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$
Putting this into our integral we have,
$$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$
Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,
$$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$
$endgroup$
Try using the substitution $displaystyle t = tan frac{theta}{2}$, this is a handy substitution to make when there are trigonometric functions that you cannot simplify very easily. In our case we have that,
$$frac{mathrm{d}t}{mathrm{d}theta} = frac{1}{2} sec^2frac{theta}{2} = frac{1}{2} left(1 + tan^2 frac{theta}{2} right) = frac{1}{2}(1 + t^2) Rightarrow frac{2mathrm{d}t}{1+t^2} = mathrm{d}theta $$
The usefulness of this substitution is that we can now use properties of a right angled triangle that has angle $theta /2$ to say that,
$$sin theta = 2sin frac{theta}{2} cos frac{theta}{2} = 2 frac{1}{sqrt{1+t^2}} frac{t}{sqrt{1+t^2}}= frac{2t}{1+t^2} $$
Putting this into our integral we have,
$$int_{-pi/2}^{pi/2} frac{mathrm{d}theta}{2 - sin theta} = int_{-1}^1 frac{2}{1+t^2} cdot frac{1}{2 - frac{2t}{1+t^2}} mathrm{d}t = int_{-1}^1 frac{1}{t^2 - t+ 1} mathrm{d}t $$
Now we have no more square roots, we have an irreducible quadratic at the bottom so we can complete the square to obtain,
$$int_{-1}^1 frac{1}{t^2 - t + 1} mathrm{d} t = int_{-1}^1 frac{1}{(t - frac{1}{2})^2 + frac{3}{4}} mathrm{d}t = frac{2}{sqrt{3}} tan^{-1} left(frac{2}{sqrt{3}}left(t - frac{1}{2}right) right) Big|_{-1}^1 = frac{pi}{sqrt{3}} $$
answered Dec 19 '18 at 10:10
symchdmathsymchdmath
60817
60817
$begingroup$
Thx very much . Substitution is very helpful
$endgroup$
– Vinay Varahabhotla
Dec 19 '18 at 10:12
$begingroup$
@VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
$endgroup$
– clathratus
Dec 19 '18 at 17:09
add a comment |
$begingroup$
Thx very much . Substitution is very helpful
$endgroup$
– Vinay Varahabhotla
Dec 19 '18 at 10:12
$begingroup$
@VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
$endgroup$
– clathratus
Dec 19 '18 at 17:09
$begingroup$
Thx very much . Substitution is very helpful
$endgroup$
– Vinay Varahabhotla
Dec 19 '18 at 10:12
$begingroup$
Thx very much . Substitution is very helpful
$endgroup$
– Vinay Varahabhotla
Dec 19 '18 at 10:12
$begingroup$
@VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
$endgroup$
– clathratus
Dec 19 '18 at 17:09
$begingroup$
@VinayVarahabhotla That substitution is called the Tangent-half angle substitution, and is REALLY useful
$endgroup$
– clathratus
Dec 19 '18 at 17:09
add a comment |
$begingroup$
It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.
Not very appealing here but can be useful for other integrals of this type.
$endgroup$
add a comment |
$begingroup$
It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.
Not very appealing here but can be useful for other integrals of this type.
$endgroup$
add a comment |
$begingroup$
It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.
Not very appealing here but can be useful for other integrals of this type.
$endgroup$
It is an integral of form $displaystyleint dfrac1{L sqrt{Q}}$, where L is a linear and Q is a quadratic. You could solve such integrals fairly easily with $L = 1/t$. Using this on your integral gives $displaystyle int dfrac{1}{sqrt{frac13 - (tsqrt 3 - frac2{sqrt{3}})^2}} dt$.
Not very appealing here but can be useful for other integrals of this type.
answered Dec 19 '18 at 14:58
user8277998user8277998
1,691521
1,691521
add a comment |
add a comment |
$begingroup$
Here is a slightly different approach.
Let
$$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
Enforcing a substitution of $x mapsto - x$ gives
$$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
Adding (1) to (2) one obtains
$$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
since the integrand is even between symmetric limits.
Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
$$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
$$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
begin{align}
I &= 4 int_0^infty frac{du}{3u^2 + 4}\
&= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
&= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
&= frac{pi}{sqrt{3}}.
end{align}
$endgroup$
add a comment |
$begingroup$
Here is a slightly different approach.
Let
$$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
Enforcing a substitution of $x mapsto - x$ gives
$$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
Adding (1) to (2) one obtains
$$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
since the integrand is even between symmetric limits.
Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
$$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
$$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
begin{align}
I &= 4 int_0^infty frac{du}{3u^2 + 4}\
&= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
&= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
&= frac{pi}{sqrt{3}}.
end{align}
$endgroup$
add a comment |
$begingroup$
Here is a slightly different approach.
Let
$$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
Enforcing a substitution of $x mapsto - x$ gives
$$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
Adding (1) to (2) one obtains
$$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
since the integrand is even between symmetric limits.
Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
$$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
$$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
begin{align}
I &= 4 int_0^infty frac{du}{3u^2 + 4}\
&= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
&= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
&= frac{pi}{sqrt{3}}.
end{align}
$endgroup$
Here is a slightly different approach.
Let
$$I = int_{-1}^1 frac{dx}{(2 - x) sqrt{1 - x^2}} qquad (1)$$
Enforcing a substitution of $x mapsto - x$ gives
$$I = int_{-1}^1 frac{dx}{(2 + x) sqrt{1 - x^2}} qquad (2)$$
Adding (1) to (2) one obtains
$$I = 2 int_{-1}^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}} = 4 int_0^1 frac{dx}{(4 - x^2) sqrt{1 - x^2}},$$
since the integrand is even between symmetric limits.
Now set $x = sin theta$. As $dx = cos theta , dtheta$, doing so yields
$$I = 4 int_0^{pi/2} frac{dtheta}{4 - sin^2 theta}.$$
Taking advantage of the identity $sin^2 theta + cos^2 theta = 1$, the dominator in the above integral can be rewritten as
$$I = 4 int_0^{pi/2} frac{dtheta}{3 sin^2 theta + 4 cos^2 theta} = 4 int_0^{pi/2} frac{sec^2 theta}{3 tan^2 theta + 4} , dtheta.$$
Setting $u = tan theta, du = sec^2 theta , dtheta$ one has
begin{align}
I &= 4 int_0^infty frac{du}{3u^2 + 4}\
&= frac{4}{3} int_0^infty frac{du}{u^2 + left (frac{2}{sqrt{3}} right )^2}\
&= frac{4}{3} left [frac{sqrt{3}}{2} tan^{-1} left (frac{u sqrt{3}}{2} right ) right ]_0^infty\
&= frac{pi}{sqrt{3}}.
end{align}
answered Dec 20 '18 at 2:53
omegadotomegadot
6,3972829
6,3972829
add a comment |
add a comment |
$begingroup$
Here's a cool generalization consider the integral
$$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
We may preform a tangent-half-angle substitution:
$$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
Thus
$$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
$$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
Then we complete the square in the denominator:
$$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
then setting $g=a-frac{b^2}a$ and preforming the substitution
$$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
we see that
$$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
$$J=frac2{sqrt{ag}}(u_2-u_1)$$
And after a bunch of algebra
$$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
Which works as long as $a^2>b^2$.
$endgroup$
add a comment |
$begingroup$
Here's a cool generalization consider the integral
$$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
We may preform a tangent-half-angle substitution:
$$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
Thus
$$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
$$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
Then we complete the square in the denominator:
$$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
then setting $g=a-frac{b^2}a$ and preforming the substitution
$$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
we see that
$$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
$$J=frac2{sqrt{ag}}(u_2-u_1)$$
And after a bunch of algebra
$$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
Which works as long as $a^2>b^2$.
$endgroup$
add a comment |
$begingroup$
Here's a cool generalization consider the integral
$$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
We may preform a tangent-half-angle substitution:
$$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
Thus
$$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
$$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
Then we complete the square in the denominator:
$$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
then setting $g=a-frac{b^2}a$ and preforming the substitution
$$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
we see that
$$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
$$J=frac2{sqrt{ag}}(u_2-u_1)$$
And after a bunch of algebra
$$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
Which works as long as $a^2>b^2$.
$endgroup$
Here's a cool generalization consider the integral
$$J=I(x_1,x_2;a,b)=int_{x_1}^{x_2}frac{dx}{a+bsin x}$$
We may preform a tangent-half-angle substitution:
$$t=tan(x/2)Rightarrow dx=frac{2dt}{1+t^2}\Rightarrow sin x=frac{2t}{1+t^2}$$
Thus
$$J=2int_{t_1}^{t_2}frac{1}{a+2bfrac{t}{1+t^2}}frac{dt}{1+t^2}$$
Where $t_1=tan(x_1/2)$ and $t_2=tan(x_2/2)$. Anyway after a little algebra,
$$J=2int_{t_1}^{t_2}frac{dt}{at^2+2bt+a}$$
Then we complete the square in the denominator:
$$J=2int_{t_1}^{t_2}frac{dt}{a(t+frac{b}a)^2+a-frac{b^2}a}$$
then setting $g=a-frac{b^2}a$ and preforming the substitution
$$t+frac{b}a=sqrt{frac{g}a}tan uRightarrow dt=sqrt{frac{g}a}sec^2u, du$$
we see that
$$J=2sqrt{frac{g}a}int_{u_1}^{u_2}frac{sec^2u}{gtan^2u+g}du$$
Where $u_1=arctanbigg[sqrt{frac{a}g}bigg(t_1+frac{a}bbigg)bigg]$ and $u_2=arctanbigg[sqrt{frac{a}g}bigg(t_2+frac{a}bbigg)bigg]$. After we note that $frac{sec^2u}{gtan^2u+g}=frac1g$, we see that
$$J=frac2{sqrt{ag}}(u_2-u_1)$$
And after a bunch of algebra
$$I(x_1,x_2;a,b)=frac1{sqrt{a^2-b^2}}bigg[arctanfrac{atan(x_2/2)+b}{sqrt{a^2-b^2}}-arctanfrac{atan(x_1/2)+b}{sqrt{a^2-b^2}}bigg]$$
Which works as long as $a^2>b^2$.
answered Jan 12 at 4:45
clathratusclathratus
4,9501338
4,9501338
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046228%2fevaluate-the-integral-int-11-frac12-x-sqrt1-x2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
symbolab.com/solver/step-by-step/…
$endgroup$
– ricky
Dec 19 '18 at 10:06
$begingroup$
I hope this helps
$endgroup$
– ricky
Dec 19 '18 at 10:06