Sums of unit vectors contained in a half-space
$begingroup$
Consider $n$ unit vectors ${v_1,...,v_n}$ with $v_iin mathbb{R}^3$. Now define
$text{H}(w):={w'inmathbb{R}^3 | (w',w)>0}, winmathbb{R}^3$
(where $(cdot,cdot)$ is the standard scalar product in $mathbb{R}^3$), i.e. the strict halfspace identified by the vector $w$. Assume $v_iintext{H}(w) forall i=1,...,n$.
For $n=2$, this implies
$v_1+v_2in text{H}(v_1)captext{H}(v_2)$.
Is it true that
$sum_i^n v_iin bigcap_{i}^ntext{H}(v_i)$
for $n>2$?
If the answer is yes, how can one prove it?
geometry convex-geometry
$endgroup$
add a comment |
$begingroup$
Consider $n$ unit vectors ${v_1,...,v_n}$ with $v_iin mathbb{R}^3$. Now define
$text{H}(w):={w'inmathbb{R}^3 | (w',w)>0}, winmathbb{R}^3$
(where $(cdot,cdot)$ is the standard scalar product in $mathbb{R}^3$), i.e. the strict halfspace identified by the vector $w$. Assume $v_iintext{H}(w) forall i=1,...,n$.
For $n=2$, this implies
$v_1+v_2in text{H}(v_1)captext{H}(v_2)$.
Is it true that
$sum_i^n v_iin bigcap_{i}^ntext{H}(v_i)$
for $n>2$?
If the answer is yes, how can one prove it?
geometry convex-geometry
$endgroup$
$begingroup$
By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
$endgroup$
– Math1000
Jan 14 at 21:17
$begingroup$
Yes! Sorry for not specifying.
$endgroup$
– Tanatofobico
Jan 14 at 21:19
$begingroup$
If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
$endgroup$
– Doug M
Jan 14 at 21:31
$begingroup$
Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
$endgroup$
– Tanatofobico
Jan 14 at 22:04
add a comment |
$begingroup$
Consider $n$ unit vectors ${v_1,...,v_n}$ with $v_iin mathbb{R}^3$. Now define
$text{H}(w):={w'inmathbb{R}^3 | (w',w)>0}, winmathbb{R}^3$
(where $(cdot,cdot)$ is the standard scalar product in $mathbb{R}^3$), i.e. the strict halfspace identified by the vector $w$. Assume $v_iintext{H}(w) forall i=1,...,n$.
For $n=2$, this implies
$v_1+v_2in text{H}(v_1)captext{H}(v_2)$.
Is it true that
$sum_i^n v_iin bigcap_{i}^ntext{H}(v_i)$
for $n>2$?
If the answer is yes, how can one prove it?
geometry convex-geometry
$endgroup$
Consider $n$ unit vectors ${v_1,...,v_n}$ with $v_iin mathbb{R}^3$. Now define
$text{H}(w):={w'inmathbb{R}^3 | (w',w)>0}, winmathbb{R}^3$
(where $(cdot,cdot)$ is the standard scalar product in $mathbb{R}^3$), i.e. the strict halfspace identified by the vector $w$. Assume $v_iintext{H}(w) forall i=1,...,n$.
For $n=2$, this implies
$v_1+v_2in text{H}(v_1)captext{H}(v_2)$.
Is it true that
$sum_i^n v_iin bigcap_{i}^ntext{H}(v_i)$
for $n>2$?
If the answer is yes, how can one prove it?
geometry convex-geometry
geometry convex-geometry
edited Jan 14 at 22:08
Tanatofobico
asked Jan 14 at 21:12
TanatofobicoTanatofobico
425
425
$begingroup$
By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
$endgroup$
– Math1000
Jan 14 at 21:17
$begingroup$
Yes! Sorry for not specifying.
$endgroup$
– Tanatofobico
Jan 14 at 21:19
$begingroup$
If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
$endgroup$
– Doug M
Jan 14 at 21:31
$begingroup$
Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
$endgroup$
– Tanatofobico
Jan 14 at 22:04
add a comment |
$begingroup$
By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
$endgroup$
– Math1000
Jan 14 at 21:17
$begingroup$
Yes! Sorry for not specifying.
$endgroup$
– Tanatofobico
Jan 14 at 21:19
$begingroup$
If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
$endgroup$
– Doug M
Jan 14 at 21:31
$begingroup$
Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
$endgroup$
– Tanatofobico
Jan 14 at 22:04
$begingroup$
By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
$endgroup$
– Math1000
Jan 14 at 21:17
$begingroup$
By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
$endgroup$
– Math1000
Jan 14 at 21:17
$begingroup$
Yes! Sorry for not specifying.
$endgroup$
– Tanatofobico
Jan 14 at 21:19
$begingroup$
Yes! Sorry for not specifying.
$endgroup$
– Tanatofobico
Jan 14 at 21:19
$begingroup$
If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
$endgroup$
– Doug M
Jan 14 at 21:31
$begingroup$
If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
$endgroup$
– Doug M
Jan 14 at 21:31
$begingroup$
Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
$endgroup$
– Tanatofobico
Jan 14 at 22:04
$begingroup$
Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
$endgroup$
– Tanatofobico
Jan 14 at 22:04
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $w=(0,1,0)$,
Let $theta in (0, frac{pi}2)$
$$v_1= (costheta, sin theta,0)$$
$$v_2=(-costheta, sin theta,0)$$
$$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$
We can check that $v_i in H(w)$.
$$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$
and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
&=-1end{align}
In particular, if we let $theta=0.01$,
$$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$
We can check that $v_1+v_2+v_3 notin H(v_2).$
octave:3> w=[0,1,0]
w =
0 1 0
octave:4> v1 = [cos(0.01), sin(0.01), 0]
v1 =
0.99995 0.01000 0.00000
octave:5> v2 = [-cos(0.01), sin(0.01), 0]
v2 =
-0.99995 0.01000 0.00000
octave:7> v3 = [cos(0.005), sin(0.005), 0]
v3 =
0.99999 0.00500 0.00000
octave:8> (v1+v2+v3)*v2'
ans = -0.99969
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073751%2fsums-of-unit-vectors-contained-in-a-half-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $w=(0,1,0)$,
Let $theta in (0, frac{pi}2)$
$$v_1= (costheta, sin theta,0)$$
$$v_2=(-costheta, sin theta,0)$$
$$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$
We can check that $v_i in H(w)$.
$$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$
and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
&=-1end{align}
In particular, if we let $theta=0.01$,
$$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$
We can check that $v_1+v_2+v_3 notin H(v_2).$
octave:3> w=[0,1,0]
w =
0 1 0
octave:4> v1 = [cos(0.01), sin(0.01), 0]
v1 =
0.99995 0.01000 0.00000
octave:5> v2 = [-cos(0.01), sin(0.01), 0]
v2 =
-0.99995 0.01000 0.00000
octave:7> v3 = [cos(0.005), sin(0.005), 0]
v3 =
0.99999 0.00500 0.00000
octave:8> (v1+v2+v3)*v2'
ans = -0.99969
$endgroup$
add a comment |
$begingroup$
Let $w=(0,1,0)$,
Let $theta in (0, frac{pi}2)$
$$v_1= (costheta, sin theta,0)$$
$$v_2=(-costheta, sin theta,0)$$
$$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$
We can check that $v_i in H(w)$.
$$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$
and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
&=-1end{align}
In particular, if we let $theta=0.01$,
$$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$
We can check that $v_1+v_2+v_3 notin H(v_2).$
octave:3> w=[0,1,0]
w =
0 1 0
octave:4> v1 = [cos(0.01), sin(0.01), 0]
v1 =
0.99995 0.01000 0.00000
octave:5> v2 = [-cos(0.01), sin(0.01), 0]
v2 =
-0.99995 0.01000 0.00000
octave:7> v3 = [cos(0.005), sin(0.005), 0]
v3 =
0.99999 0.00500 0.00000
octave:8> (v1+v2+v3)*v2'
ans = -0.99969
$endgroup$
add a comment |
$begingroup$
Let $w=(0,1,0)$,
Let $theta in (0, frac{pi}2)$
$$v_1= (costheta, sin theta,0)$$
$$v_2=(-costheta, sin theta,0)$$
$$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$
We can check that $v_i in H(w)$.
$$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$
and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
&=-1end{align}
In particular, if we let $theta=0.01$,
$$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$
We can check that $v_1+v_2+v_3 notin H(v_2).$
octave:3> w=[0,1,0]
w =
0 1 0
octave:4> v1 = [cos(0.01), sin(0.01), 0]
v1 =
0.99995 0.01000 0.00000
octave:5> v2 = [-cos(0.01), sin(0.01), 0]
v2 =
-0.99995 0.01000 0.00000
octave:7> v3 = [cos(0.005), sin(0.005), 0]
v3 =
0.99999 0.00500 0.00000
octave:8> (v1+v2+v3)*v2'
ans = -0.99969
$endgroup$
Let $w=(0,1,0)$,
Let $theta in (0, frac{pi}2)$
$$v_1= (costheta, sin theta,0)$$
$$v_2=(-costheta, sin theta,0)$$
$$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$
We can check that $v_i in H(w)$.
$$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$
and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
&=-1end{align}
In particular, if we let $theta=0.01$,
$$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$
We can check that $v_1+v_2+v_3 notin H(v_2).$
octave:3> w=[0,1,0]
w =
0 1 0
octave:4> v1 = [cos(0.01), sin(0.01), 0]
v1 =
0.99995 0.01000 0.00000
octave:5> v2 = [-cos(0.01), sin(0.01), 0]
v2 =
-0.99995 0.01000 0.00000
octave:7> v3 = [cos(0.005), sin(0.005), 0]
v3 =
0.99999 0.00500 0.00000
octave:8> (v1+v2+v3)*v2'
ans = -0.99969
edited Jan 15 at 11:56
answered Jan 15 at 1:16
Siong Thye GohSiong Thye Goh
103k1468119
103k1468119
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073751%2fsums-of-unit-vectors-contained-in-a-half-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
$endgroup$
– Math1000
Jan 14 at 21:17
$begingroup$
Yes! Sorry for not specifying.
$endgroup$
– Tanatofobico
Jan 14 at 21:19
$begingroup$
If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
$endgroup$
– Doug M
Jan 14 at 21:31
$begingroup$
Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
$endgroup$
– Tanatofobico
Jan 14 at 22:04