Prove that if $g(x)leq g(y)$ then $F(x)leq F(y),$ where $F(x)=int^{g(x)}_{a}f(t)dt$
$begingroup$
Can you help me check if this is correct?
Prove that if $f$ is continuous and nonnegative on $[a,b]$ and $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$
$$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
PROOF 1
Since $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$ then $g'(x)geq 0,;forall;xin [a,b]$
begin{align} F'(x)&=dfrac{d}{dx}int^{g(x)}_{a}f(t)dt \&=fleft(g(x)right)g'(x) geq 0,;forall;xin [a,b]end{align}
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
PROOF 2
Let $x,yin[a,b]$ be fixed such that $xleq y$. Since $g$ is nondecreasing, then $g(x)leq g(y).$ Thus, $[a,g(x)]subseteq [a,g(y)]$ and
$$F(x)=int^{g(x)}_{a}f(t)dtleq int^{g(y)}_{a}f(t)dt =F(y)$$
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
real-analysis calculus analysis proof-verification
$endgroup$
|
show 1 more comment
$begingroup$
Can you help me check if this is correct?
Prove that if $f$ is continuous and nonnegative on $[a,b]$ and $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$
$$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
PROOF 1
Since $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$ then $g'(x)geq 0,;forall;xin [a,b]$
begin{align} F'(x)&=dfrac{d}{dx}int^{g(x)}_{a}f(t)dt \&=fleft(g(x)right)g'(x) geq 0,;forall;xin [a,b]end{align}
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
PROOF 2
Let $x,yin[a,b]$ be fixed such that $xleq y$. Since $g$ is nondecreasing, then $g(x)leq g(y).$ Thus, $[a,g(x)]subseteq [a,g(y)]$ and
$$F(x)=int^{g(x)}_{a}f(t)dtleq int^{g(y)}_{a}f(t)dt =F(y)$$
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
real-analysis calculus analysis proof-verification
$endgroup$
2
$begingroup$
Looks OK, but the best you can conclude is that $F$ is nondecreasing.
$endgroup$
– Umberto P.
Jan 14 at 21:09
$begingroup$
Thanks for your feedback! I'll edit!
$endgroup$
– Omojola Micheal
Jan 14 at 21:10
1
$begingroup$
No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
$endgroup$
– Arthur
Jan 14 at 21:14
$begingroup$
@Arthur: Hmm... I see you what you've stated!
$endgroup$
– Omojola Micheal
Jan 14 at 21:18
1
$begingroup$
@UmbertoP. I think the constant function is monotonically increasing as well.
$endgroup$
– Botond
Jan 14 at 21:24
|
show 1 more comment
$begingroup$
Can you help me check if this is correct?
Prove that if $f$ is continuous and nonnegative on $[a,b]$ and $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$
$$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
PROOF 1
Since $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$ then $g'(x)geq 0,;forall;xin [a,b]$
begin{align} F'(x)&=dfrac{d}{dx}int^{g(x)}_{a}f(t)dt \&=fleft(g(x)right)g'(x) geq 0,;forall;xin [a,b]end{align}
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
PROOF 2
Let $x,yin[a,b]$ be fixed such that $xleq y$. Since $g$ is nondecreasing, then $g(x)leq g(y).$ Thus, $[a,g(x)]subseteq [a,g(y)]$ and
$$F(x)=int^{g(x)}_{a}f(t)dtleq int^{g(y)}_{a}f(t)dt =F(y)$$
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
real-analysis calculus analysis proof-verification
$endgroup$
Can you help me check if this is correct?
Prove that if $f$ is continuous and nonnegative on $[a,b]$ and $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$
$$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
PROOF 1
Since $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$ then $g'(x)geq 0,;forall;xin [a,b]$
begin{align} F'(x)&=dfrac{d}{dx}int^{g(x)}_{a}f(t)dt \&=fleft(g(x)right)g'(x) geq 0,;forall;xin [a,b]end{align}
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
PROOF 2
Let $x,yin[a,b]$ be fixed such that $xleq y$. Since $g$ is nondecreasing, then $g(x)leq g(y).$ Thus, $[a,g(x)]subseteq [a,g(y)]$ and
$$F(x)=int^{g(x)}_{a}f(t)dtleq int^{g(y)}_{a}f(t)dt =F(y)$$
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$
real-analysis calculus analysis proof-verification
real-analysis calculus analysis proof-verification
edited Jan 15 at 3:27
Omojola Micheal
asked Jan 14 at 21:04
Omojola MichealOmojola Micheal
1,999424
1,999424
2
$begingroup$
Looks OK, but the best you can conclude is that $F$ is nondecreasing.
$endgroup$
– Umberto P.
Jan 14 at 21:09
$begingroup$
Thanks for your feedback! I'll edit!
$endgroup$
– Omojola Micheal
Jan 14 at 21:10
1
$begingroup$
No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
$endgroup$
– Arthur
Jan 14 at 21:14
$begingroup$
@Arthur: Hmm... I see you what you've stated!
$endgroup$
– Omojola Micheal
Jan 14 at 21:18
1
$begingroup$
@UmbertoP. I think the constant function is monotonically increasing as well.
$endgroup$
– Botond
Jan 14 at 21:24
|
show 1 more comment
2
$begingroup$
Looks OK, but the best you can conclude is that $F$ is nondecreasing.
$endgroup$
– Umberto P.
Jan 14 at 21:09
$begingroup$
Thanks for your feedback! I'll edit!
$endgroup$
– Omojola Micheal
Jan 14 at 21:10
1
$begingroup$
No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
$endgroup$
– Arthur
Jan 14 at 21:14
$begingroup$
@Arthur: Hmm... I see you what you've stated!
$endgroup$
– Omojola Micheal
Jan 14 at 21:18
1
$begingroup$
@UmbertoP. I think the constant function is monotonically increasing as well.
$endgroup$
– Botond
Jan 14 at 21:24
2
2
$begingroup$
Looks OK, but the best you can conclude is that $F$ is nondecreasing.
$endgroup$
– Umberto P.
Jan 14 at 21:09
$begingroup$
Looks OK, but the best you can conclude is that $F$ is nondecreasing.
$endgroup$
– Umberto P.
Jan 14 at 21:09
$begingroup$
Thanks for your feedback! I'll edit!
$endgroup$
– Omojola Micheal
Jan 14 at 21:10
$begingroup$
Thanks for your feedback! I'll edit!
$endgroup$
– Omojola Micheal
Jan 14 at 21:10
1
1
$begingroup$
No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
$endgroup$
– Arthur
Jan 14 at 21:14
$begingroup$
No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
$endgroup$
– Arthur
Jan 14 at 21:14
$begingroup$
@Arthur: Hmm... I see you what you've stated!
$endgroup$
– Omojola Micheal
Jan 14 at 21:18
$begingroup$
@Arthur: Hmm... I see you what you've stated!
$endgroup$
– Omojola Micheal
Jan 14 at 21:18
1
1
$begingroup$
@UmbertoP. I think the constant function is monotonically increasing as well.
$endgroup$
– Botond
Jan 14 at 21:24
$begingroup$
@UmbertoP. I think the constant function is monotonically increasing as well.
$endgroup$
– Botond
Jan 14 at 21:24
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
This is correct; A little more general:
Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$
Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}
ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}
$endgroup$
$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073741%2fprove-that-if-gx-leq-gy-then-fx-leq-fy-where-fx-intgx-af%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is correct; A little more general:
Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$
Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}
ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}
$endgroup$
$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07
add a comment |
$begingroup$
This is correct; A little more general:
Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$
Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}
ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}
$endgroup$
$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07
add a comment |
$begingroup$
This is correct; A little more general:
Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$
Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}
ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}
$endgroup$
This is correct; A little more general:
Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$
Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}
ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}
edited Jan 14 at 21:59
answered Jan 14 at 21:47
Maximilian JanischMaximilian Janisch
45612
45612
$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07
add a comment |
$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07
$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07
$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073741%2fprove-that-if-gx-leq-gy-then-fx-leq-fy-where-fx-intgx-af%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Looks OK, but the best you can conclude is that $F$ is nondecreasing.
$endgroup$
– Umberto P.
Jan 14 at 21:09
$begingroup$
Thanks for your feedback! I'll edit!
$endgroup$
– Omojola Micheal
Jan 14 at 21:10
1
$begingroup$
No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
$endgroup$
– Arthur
Jan 14 at 21:14
$begingroup$
@Arthur: Hmm... I see you what you've stated!
$endgroup$
– Omojola Micheal
Jan 14 at 21:18
1
$begingroup$
@UmbertoP. I think the constant function is monotonically increasing as well.
$endgroup$
– Botond
Jan 14 at 21:24