Function which becomes just a relation on $R^{-}$?












0












$begingroup$


Consider the function on the variable $xin R$ and the parameter $ain R$:
$$f(x)=frac{a-sqrt{x}}{a+sqrt{x}}$$
Of course if $x>=0$ you have a simple function $f:R rightarrow R$.

If $x<0$ you can write:
$$f(x)=frac{a-sqrt{(-1)(-x)}}{a+sqrt{(-1)(-x)}}$$
$$f(x)=frac{a-[pm isqrt{(-x)}]}{a+[pm i sqrt{(-x)}]}$$
So now there are 4 possibilities according to the signs you put:
$$binom{+}{+} rightarrow f(x)=frac{a-[isqrt{(-x)}]}{a+[i sqrt{(-x)}]}=e^{itheta(x)} $$
$$binom{+}{-} rightarrow f(x)=frac{a-[+isqrt{(-x)}]}{a+[-i sqrt{(-x)}]}=1 $$
$$binom{-}{+} rightarrow f(x)=frac{a-[-isqrt{(-x)}]}{a+[+i sqrt{(-x)}]} =1$$
$$binom{-}{-} rightarrow f(x)=frac{a-[-isqrt{(-x)}]}{a+[-i sqrt{(-x)}]} e^{-itheta(x)} $$
Finally:
$$ f(x)=begin{cases}
1 \
e^{-itheta(x)}\
e^{itheta(x)}
end{cases}
$$

So I'd say that for $x<0$ $f(x)$ isn't anymore a function...Is it right?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Consider the function on the variable $xin R$ and the parameter $ain R$:
    $$f(x)=frac{a-sqrt{x}}{a+sqrt{x}}$$
    Of course if $x>=0$ you have a simple function $f:R rightarrow R$.

    If $x<0$ you can write:
    $$f(x)=frac{a-sqrt{(-1)(-x)}}{a+sqrt{(-1)(-x)}}$$
    $$f(x)=frac{a-[pm isqrt{(-x)}]}{a+[pm i sqrt{(-x)}]}$$
    So now there are 4 possibilities according to the signs you put:
    $$binom{+}{+} rightarrow f(x)=frac{a-[isqrt{(-x)}]}{a+[i sqrt{(-x)}]}=e^{itheta(x)} $$
    $$binom{+}{-} rightarrow f(x)=frac{a-[+isqrt{(-x)}]}{a+[-i sqrt{(-x)}]}=1 $$
    $$binom{-}{+} rightarrow f(x)=frac{a-[-isqrt{(-x)}]}{a+[+i sqrt{(-x)}]} =1$$
    $$binom{-}{-} rightarrow f(x)=frac{a-[-isqrt{(-x)}]}{a+[-i sqrt{(-x)}]} e^{-itheta(x)} $$
    Finally:
    $$ f(x)=begin{cases}
    1 \
    e^{-itheta(x)}\
    e^{itheta(x)}
    end{cases}
    $$

    So I'd say that for $x<0$ $f(x)$ isn't anymore a function...Is it right?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Consider the function on the variable $xin R$ and the parameter $ain R$:
      $$f(x)=frac{a-sqrt{x}}{a+sqrt{x}}$$
      Of course if $x>=0$ you have a simple function $f:R rightarrow R$.

      If $x<0$ you can write:
      $$f(x)=frac{a-sqrt{(-1)(-x)}}{a+sqrt{(-1)(-x)}}$$
      $$f(x)=frac{a-[pm isqrt{(-x)}]}{a+[pm i sqrt{(-x)}]}$$
      So now there are 4 possibilities according to the signs you put:
      $$binom{+}{+} rightarrow f(x)=frac{a-[isqrt{(-x)}]}{a+[i sqrt{(-x)}]}=e^{itheta(x)} $$
      $$binom{+}{-} rightarrow f(x)=frac{a-[+isqrt{(-x)}]}{a+[-i sqrt{(-x)}]}=1 $$
      $$binom{-}{+} rightarrow f(x)=frac{a-[-isqrt{(-x)}]}{a+[+i sqrt{(-x)}]} =1$$
      $$binom{-}{-} rightarrow f(x)=frac{a-[-isqrt{(-x)}]}{a+[-i sqrt{(-x)}]} e^{-itheta(x)} $$
      Finally:
      $$ f(x)=begin{cases}
      1 \
      e^{-itheta(x)}\
      e^{itheta(x)}
      end{cases}
      $$

      So I'd say that for $x<0$ $f(x)$ isn't anymore a function...Is it right?










      share|cite|improve this question









      $endgroup$




      Consider the function on the variable $xin R$ and the parameter $ain R$:
      $$f(x)=frac{a-sqrt{x}}{a+sqrt{x}}$$
      Of course if $x>=0$ you have a simple function $f:R rightarrow R$.

      If $x<0$ you can write:
      $$f(x)=frac{a-sqrt{(-1)(-x)}}{a+sqrt{(-1)(-x)}}$$
      $$f(x)=frac{a-[pm isqrt{(-x)}]}{a+[pm i sqrt{(-x)}]}$$
      So now there are 4 possibilities according to the signs you put:
      $$binom{+}{+} rightarrow f(x)=frac{a-[isqrt{(-x)}]}{a+[i sqrt{(-x)}]}=e^{itheta(x)} $$
      $$binom{+}{-} rightarrow f(x)=frac{a-[+isqrt{(-x)}]}{a+[-i sqrt{(-x)}]}=1 $$
      $$binom{-}{+} rightarrow f(x)=frac{a-[-isqrt{(-x)}]}{a+[+i sqrt{(-x)}]} =1$$
      $$binom{-}{-} rightarrow f(x)=frac{a-[-isqrt{(-x)}]}{a+[-i sqrt{(-x)}]} e^{-itheta(x)} $$
      Finally:
      $$ f(x)=begin{cases}
      1 \
      e^{-itheta(x)}\
      e^{itheta(x)}
      end{cases}
      $$

      So I'd say that for $x<0$ $f(x)$ isn't anymore a function...Is it right?







      real-analysis complex-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 29 '18 at 20:26









      LandauLandau

      447




      447






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          This is not a function over the complex numbers, since the square root of a complex number is not a well-defined notion. See How do I get the square root of a complex number?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I know how to get the root of a cn, however do you confirm that my result is right?
            $endgroup$
            – Landau
            Dec 29 '18 at 20:37











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056222%2ffunction-which-becomes-just-a-relation-on-r%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          This is not a function over the complex numbers, since the square root of a complex number is not a well-defined notion. See How do I get the square root of a complex number?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I know how to get the root of a cn, however do you confirm that my result is right?
            $endgroup$
            – Landau
            Dec 29 '18 at 20:37
















          0












          $begingroup$

          This is not a function over the complex numbers, since the square root of a complex number is not a well-defined notion. See How do I get the square root of a complex number?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I know how to get the root of a cn, however do you confirm that my result is right?
            $endgroup$
            – Landau
            Dec 29 '18 at 20:37














          0












          0








          0





          $begingroup$

          This is not a function over the complex numbers, since the square root of a complex number is not a well-defined notion. See How do I get the square root of a complex number?






          share|cite|improve this answer









          $endgroup$



          This is not a function over the complex numbers, since the square root of a complex number is not a well-defined notion. See How do I get the square root of a complex number?







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 29 '18 at 20:34









          Hans HüttelHans Hüttel

          3,1972921




          3,1972921












          • $begingroup$
            I know how to get the root of a cn, however do you confirm that my result is right?
            $endgroup$
            – Landau
            Dec 29 '18 at 20:37


















          • $begingroup$
            I know how to get the root of a cn, however do you confirm that my result is right?
            $endgroup$
            – Landau
            Dec 29 '18 at 20:37
















          $begingroup$
          I know how to get the root of a cn, however do you confirm that my result is right?
          $endgroup$
          – Landau
          Dec 29 '18 at 20:37




          $begingroup$
          I know how to get the root of a cn, however do you confirm that my result is right?
          $endgroup$
          – Landau
          Dec 29 '18 at 20:37


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056222%2ffunction-which-becomes-just-a-relation-on-r%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅