find volume using Cavalieri - difficult integral
$begingroup$
$B_n(0,1)$ is the $n$ dimensional ball, centered at zero with radius one.
We define the set $P_n = {x in B_n: |x_1| < frac{1}{1000}}$. Find $v(P_n)$.
What I did:
Notice that the intersection of $P_n$ with the plane $x_1 = t$ is well defined for $t in (-frac{1}{1000}, frac{1}{1000})$ and that $P_n cap{x in mathbb R^n: x = t} = {x in mathbb R^n: x_2^2+x_3^2+ dots +x_n^2 < 1-t^2} =B_{n-1}(0,sqrt{1-t^2})$.
Now from Cavalieri's principle:
$$v(P_n) = int_{P_n}1dx = int_{-frac{1}{1000}}^{frac{1}{1000}}int_{B_{n-1}(0,sqrt{1-t^2})}1dxdt = v(B_{n-1}(0,1))int_{-frac{1}{1000}}^{frac{1}{1000}}(1-t^2)^{frac{n-1}{2}}dt$$
How would we calculate this integral?
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
$B_n(0,1)$ is the $n$ dimensional ball, centered at zero with radius one.
We define the set $P_n = {x in B_n: |x_1| < frac{1}{1000}}$. Find $v(P_n)$.
What I did:
Notice that the intersection of $P_n$ with the plane $x_1 = t$ is well defined for $t in (-frac{1}{1000}, frac{1}{1000})$ and that $P_n cap{x in mathbb R^n: x = t} = {x in mathbb R^n: x_2^2+x_3^2+ dots +x_n^2 < 1-t^2} =B_{n-1}(0,sqrt{1-t^2})$.
Now from Cavalieri's principle:
$$v(P_n) = int_{P_n}1dx = int_{-frac{1}{1000}}^{frac{1}{1000}}int_{B_{n-1}(0,sqrt{1-t^2})}1dxdt = v(B_{n-1}(0,1))int_{-frac{1}{1000}}^{frac{1}{1000}}(1-t^2)^{frac{n-1}{2}}dt$$
How would we calculate this integral?
calculus integration definite-integrals
$endgroup$
3
$begingroup$
Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
$endgroup$
– user458276
Dec 29 '18 at 21:37
add a comment |
$begingroup$
$B_n(0,1)$ is the $n$ dimensional ball, centered at zero with radius one.
We define the set $P_n = {x in B_n: |x_1| < frac{1}{1000}}$. Find $v(P_n)$.
What I did:
Notice that the intersection of $P_n$ with the plane $x_1 = t$ is well defined for $t in (-frac{1}{1000}, frac{1}{1000})$ and that $P_n cap{x in mathbb R^n: x = t} = {x in mathbb R^n: x_2^2+x_3^2+ dots +x_n^2 < 1-t^2} =B_{n-1}(0,sqrt{1-t^2})$.
Now from Cavalieri's principle:
$$v(P_n) = int_{P_n}1dx = int_{-frac{1}{1000}}^{frac{1}{1000}}int_{B_{n-1}(0,sqrt{1-t^2})}1dxdt = v(B_{n-1}(0,1))int_{-frac{1}{1000}}^{frac{1}{1000}}(1-t^2)^{frac{n-1}{2}}dt$$
How would we calculate this integral?
calculus integration definite-integrals
$endgroup$
$B_n(0,1)$ is the $n$ dimensional ball, centered at zero with radius one.
We define the set $P_n = {x in B_n: |x_1| < frac{1}{1000}}$. Find $v(P_n)$.
What I did:
Notice that the intersection of $P_n$ with the plane $x_1 = t$ is well defined for $t in (-frac{1}{1000}, frac{1}{1000})$ and that $P_n cap{x in mathbb R^n: x = t} = {x in mathbb R^n: x_2^2+x_3^2+ dots +x_n^2 < 1-t^2} =B_{n-1}(0,sqrt{1-t^2})$.
Now from Cavalieri's principle:
$$v(P_n) = int_{P_n}1dx = int_{-frac{1}{1000}}^{frac{1}{1000}}int_{B_{n-1}(0,sqrt{1-t^2})}1dxdt = v(B_{n-1}(0,1))int_{-frac{1}{1000}}^{frac{1}{1000}}(1-t^2)^{frac{n-1}{2}}dt$$
How would we calculate this integral?
calculus integration definite-integrals
calculus integration definite-integrals
edited Dec 29 '18 at 21:39
Bernard
119k639112
119k639112
asked Dec 29 '18 at 21:32
Oria GruberOria Gruber
6,50732360
6,50732360
3
$begingroup$
Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
$endgroup$
– user458276
Dec 29 '18 at 21:37
add a comment |
3
$begingroup$
Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
$endgroup$
– user458276
Dec 29 '18 at 21:37
3
3
$begingroup$
Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
$endgroup$
– user458276
Dec 29 '18 at 21:37
$begingroup$
Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
$endgroup$
– user458276
Dec 29 '18 at 21:37
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain
$$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$
Then take a look at a list of trig integrals and find
$$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$
Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056284%2ffind-volume-using-cavalieri-difficult-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain
$$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$
Then take a look at a list of trig integrals and find
$$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$
Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).
$endgroup$
add a comment |
$begingroup$
I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain
$$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$
Then take a look at a list of trig integrals and find
$$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$
Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).
$endgroup$
add a comment |
$begingroup$
I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain
$$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$
Then take a look at a list of trig integrals and find
$$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$
Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).
$endgroup$
I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain
$$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$
Then take a look at a list of trig integrals and find
$$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$
Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).
edited Dec 29 '18 at 22:04
answered Dec 29 '18 at 21:55
0x5390x539
1,067317
1,067317
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056284%2ffind-volume-using-cavalieri-difficult-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
$endgroup$
– user458276
Dec 29 '18 at 21:37