find volume using Cavalieri - difficult integral












1












$begingroup$


$B_n(0,1)$ is the $n$ dimensional ball, centered at zero with radius one.



We define the set $P_n = {x in B_n: |x_1| < frac{1}{1000}}$. Find $v(P_n)$.



What I did:



Notice that the intersection of $P_n$ with the plane $x_1 = t$ is well defined for $t in (-frac{1}{1000}, frac{1}{1000})$ and that $P_n cap{x in mathbb R^n: x = t} = {x in mathbb R^n: x_2^2+x_3^2+ dots +x_n^2 < 1-t^2} =B_{n-1}(0,sqrt{1-t^2})$.



Now from Cavalieri's principle:



$$v(P_n) = int_{P_n}1dx = int_{-frac{1}{1000}}^{frac{1}{1000}}int_{B_{n-1}(0,sqrt{1-t^2})}1dxdt = v(B_{n-1}(0,1))int_{-frac{1}{1000}}^{frac{1}{1000}}(1-t^2)^{frac{n-1}{2}}dt$$



How would we calculate this integral?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
    $endgroup$
    – user458276
    Dec 29 '18 at 21:37
















1












$begingroup$


$B_n(0,1)$ is the $n$ dimensional ball, centered at zero with radius one.



We define the set $P_n = {x in B_n: |x_1| < frac{1}{1000}}$. Find $v(P_n)$.



What I did:



Notice that the intersection of $P_n$ with the plane $x_1 = t$ is well defined for $t in (-frac{1}{1000}, frac{1}{1000})$ and that $P_n cap{x in mathbb R^n: x = t} = {x in mathbb R^n: x_2^2+x_3^2+ dots +x_n^2 < 1-t^2} =B_{n-1}(0,sqrt{1-t^2})$.



Now from Cavalieri's principle:



$$v(P_n) = int_{P_n}1dx = int_{-frac{1}{1000}}^{frac{1}{1000}}int_{B_{n-1}(0,sqrt{1-t^2})}1dxdt = v(B_{n-1}(0,1))int_{-frac{1}{1000}}^{frac{1}{1000}}(1-t^2)^{frac{n-1}{2}}dt$$



How would we calculate this integral?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
    $endgroup$
    – user458276
    Dec 29 '18 at 21:37














1












1








1





$begingroup$


$B_n(0,1)$ is the $n$ dimensional ball, centered at zero with radius one.



We define the set $P_n = {x in B_n: |x_1| < frac{1}{1000}}$. Find $v(P_n)$.



What I did:



Notice that the intersection of $P_n$ with the plane $x_1 = t$ is well defined for $t in (-frac{1}{1000}, frac{1}{1000})$ and that $P_n cap{x in mathbb R^n: x = t} = {x in mathbb R^n: x_2^2+x_3^2+ dots +x_n^2 < 1-t^2} =B_{n-1}(0,sqrt{1-t^2})$.



Now from Cavalieri's principle:



$$v(P_n) = int_{P_n}1dx = int_{-frac{1}{1000}}^{frac{1}{1000}}int_{B_{n-1}(0,sqrt{1-t^2})}1dxdt = v(B_{n-1}(0,1))int_{-frac{1}{1000}}^{frac{1}{1000}}(1-t^2)^{frac{n-1}{2}}dt$$



How would we calculate this integral?










share|cite|improve this question











$endgroup$




$B_n(0,1)$ is the $n$ dimensional ball, centered at zero with radius one.



We define the set $P_n = {x in B_n: |x_1| < frac{1}{1000}}$. Find $v(P_n)$.



What I did:



Notice that the intersection of $P_n$ with the plane $x_1 = t$ is well defined for $t in (-frac{1}{1000}, frac{1}{1000})$ and that $P_n cap{x in mathbb R^n: x = t} = {x in mathbb R^n: x_2^2+x_3^2+ dots +x_n^2 < 1-t^2} =B_{n-1}(0,sqrt{1-t^2})$.



Now from Cavalieri's principle:



$$v(P_n) = int_{P_n}1dx = int_{-frac{1}{1000}}^{frac{1}{1000}}int_{B_{n-1}(0,sqrt{1-t^2})}1dxdt = v(B_{n-1}(0,1))int_{-frac{1}{1000}}^{frac{1}{1000}}(1-t^2)^{frac{n-1}{2}}dt$$



How would we calculate this integral?







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 21:39









Bernard

119k639112




119k639112










asked Dec 29 '18 at 21:32









Oria GruberOria Gruber

6,50732360




6,50732360








  • 3




    $begingroup$
    Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
    $endgroup$
    – user458276
    Dec 29 '18 at 21:37














  • 3




    $begingroup$
    Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
    $endgroup$
    – user458276
    Dec 29 '18 at 21:37








3




3




$begingroup$
Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
$endgroup$
– user458276
Dec 29 '18 at 21:37




$begingroup$
Substitute t = $sin(theta)$ into the integral, and use a identity for the integral of $cos(theta)^n$.
$endgroup$
– user458276
Dec 29 '18 at 21:37










1 Answer
1






active

oldest

votes


















1












$begingroup$

I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain



$$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$



Then take a look at a list of trig integrals and find



$$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$



Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056284%2ffind-volume-using-cavalieri-difficult-integral%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain



    $$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$



    Then take a look at a list of trig integrals and find



    $$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$



    Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain



      $$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$



      Then take a look at a list of trig integrals and find



      $$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$



      Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain



        $$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$



        Then take a look at a list of trig integrals and find



        $$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$



        Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).






        share|cite|improve this answer











        $endgroup$



        I'll elaborate on @user458276's comment: For an integral $int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t$ first substitute $t = sintheta$ to obtain



        $$int_{-a}^a (1 - t^2)^{frac{n-1}{2}} mathrm{d}t = int_{-arcsin a}^{arcsin a} (cos^2 theta)^frac{n-1}{2} cos theta ,mathrm{d} theta = 2 int_0^{arcsin a} cos^n theta , mathrm{d} theta$$



        Then take a look at a list of trig integrals and find



        $$ int cos^n theta ,mathrm{d}theta = frac1{n} cos^{n-1}theta ,sintheta - frac{n-1}{n}int cos^{n-2} theta ,mathrm{d}theta$$



        Since $n$ is an integer repeatedly applying this expression will lead to a known integral ($int mathrm{d}theta$ for even $n$ and $intcostheta,mathrm{d}theta$ for odd $n$).







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 29 '18 at 22:04

























        answered Dec 29 '18 at 21:55









        0x5390x539

        1,067317




        1,067317






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056284%2ffind-volume-using-cavalieri-difficult-integral%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Human spaceflight

            Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

            File:DeusFollowingSea.jpg