Conjecture $sumlimits_{n=0}^{infty}{2n choose n}^22^{-4n} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{2C}{pi} $
$begingroup$
I was observing this interesting paper
and conjecture this result,
$$sum_{n=0}^{infty}frac{{2n choose n}^2}{2^{4n+1}} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{C}{pi} tag1$$
Where C is Catalan's constant $=0.9156965...$
I am unable to present a prove of $(1)$.
How do we go about to prove its?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I was observing this interesting paper
and conjecture this result,
$$sum_{n=0}^{infty}frac{{2n choose n}^2}{2^{4n+1}} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{C}{pi} tag1$$
Where C is Catalan's constant $=0.9156965...$
I am unable to present a prove of $(1)$.
How do we go about to prove its?
sequences-and-series
$endgroup$
1
$begingroup$
Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
$endgroup$
– Steve Kass
Dec 29 '18 at 21:58
add a comment |
$begingroup$
I was observing this interesting paper
and conjecture this result,
$$sum_{n=0}^{infty}frac{{2n choose n}^2}{2^{4n+1}} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{C}{pi} tag1$$
Where C is Catalan's constant $=0.9156965...$
I am unable to present a prove of $(1)$.
How do we go about to prove its?
sequences-and-series
$endgroup$
I was observing this interesting paper
and conjecture this result,
$$sum_{n=0}^{infty}frac{{2n choose n}^2}{2^{4n+1}} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{C}{pi} tag1$$
Where C is Catalan's constant $=0.9156965...$
I am unable to present a prove of $(1)$.
How do we go about to prove its?
sequences-and-series
sequences-and-series
edited Dec 30 '18 at 22:11
Did
246k23221457
246k23221457
asked Dec 29 '18 at 21:45
user583851user583851
4297
4297
1
$begingroup$
Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
$endgroup$
– Steve Kass
Dec 29 '18 at 21:58
add a comment |
1
$begingroup$
Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
$endgroup$
– Steve Kass
Dec 29 '18 at 21:58
1
1
$begingroup$
Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
$endgroup$
– Steve Kass
Dec 29 '18 at 21:58
$begingroup$
Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
$endgroup$
– Steve Kass
Dec 29 '18 at 21:58
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Answer Without Legendre Polynomials and Elliptic Integrals
Using the integral
$$
frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
$$
and the sum
$$
sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
$$
we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
$$
Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
&=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
&=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
end{align}
$$
Plugging in $r=1$, and using the result from $(11)$, yields
$$
begin{align}
color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
&=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
&=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
&=color{#C00}{frac{4mathrm{G}}pi}tag5
end{align}
$$
Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
&=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
&=color{#090}{-frac2pi}tag7
end{align}
$$
Dividing $(6)$ by $r$, and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
&=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
&=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
end{align}
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
&=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
&=color{#00F}{frac4pi}tag9
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
&=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
&=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
&=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
end{align}
$$
Result used in $boldsymbol{(5)}$:
$$
begin{align}
int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
&=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
&=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
&=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
&=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
&=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
&=2mathrm{G}tag{11}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Fourier-Legendre series provide a very simple derivation. We may recall that
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
$$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals
$$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
$$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
All of them are straightforward, since
$$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
$$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
$$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
hence
$$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$
This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.
$endgroup$
$begingroup$
Jack, your work and contribution to this site are truly remarkable.
$endgroup$
– Klangen
Dec 30 '18 at 21:57
$begingroup$
@Klangen: I'm flattered :)
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 22:46
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056291%2fconjecture-sum-limits-n-0-infty2n-choose-n22-4n-fracn6n-12n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Answer Without Legendre Polynomials and Elliptic Integrals
Using the integral
$$
frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
$$
and the sum
$$
sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
$$
we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
$$
Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
&=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
&=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
end{align}
$$
Plugging in $r=1$, and using the result from $(11)$, yields
$$
begin{align}
color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
&=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
&=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
&=color{#C00}{frac{4mathrm{G}}pi}tag5
end{align}
$$
Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
&=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
&=color{#090}{-frac2pi}tag7
end{align}
$$
Dividing $(6)$ by $r$, and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
&=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
&=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
end{align}
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
&=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
&=color{#00F}{frac4pi}tag9
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
&=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
&=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
&=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
end{align}
$$
Result used in $boldsymbol{(5)}$:
$$
begin{align}
int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
&=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
&=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
&=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
&=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
&=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
&=2mathrm{G}tag{11}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Answer Without Legendre Polynomials and Elliptic Integrals
Using the integral
$$
frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
$$
and the sum
$$
sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
$$
we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
$$
Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
&=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
&=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
end{align}
$$
Plugging in $r=1$, and using the result from $(11)$, yields
$$
begin{align}
color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
&=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
&=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
&=color{#C00}{frac{4mathrm{G}}pi}tag5
end{align}
$$
Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
&=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
&=color{#090}{-frac2pi}tag7
end{align}
$$
Dividing $(6)$ by $r$, and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
&=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
&=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
end{align}
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
&=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
&=color{#00F}{frac4pi}tag9
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
&=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
&=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
&=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
end{align}
$$
Result used in $boldsymbol{(5)}$:
$$
begin{align}
int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
&=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
&=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
&=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
&=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
&=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
&=2mathrm{G}tag{11}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Answer Without Legendre Polynomials and Elliptic Integrals
Using the integral
$$
frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
$$
and the sum
$$
sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
$$
we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
$$
Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
&=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
&=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
end{align}
$$
Plugging in $r=1$, and using the result from $(11)$, yields
$$
begin{align}
color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
&=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
&=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
&=color{#C00}{frac{4mathrm{G}}pi}tag5
end{align}
$$
Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
&=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
&=color{#090}{-frac2pi}tag7
end{align}
$$
Dividing $(6)$ by $r$, and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
&=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
&=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
end{align}
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
&=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
&=color{#00F}{frac4pi}tag9
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
&=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
&=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
&=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
end{align}
$$
Result used in $boldsymbol{(5)}$:
$$
begin{align}
int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
&=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
&=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
&=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
&=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
&=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
&=2mathrm{G}tag{11}
end{align}
$$
$endgroup$
Answer Without Legendre Polynomials and Elliptic Integrals
Using the integral
$$
frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
$$
and the sum
$$
sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
$$
we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
$$
Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
&=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
&=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
end{align}
$$
Plugging in $r=1$, and using the result from $(11)$, yields
$$
begin{align}
color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
&=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
&=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
&=color{#C00}{frac{4mathrm{G}}pi}tag5
end{align}
$$
Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
&=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
&=color{#090}{-frac2pi}tag7
end{align}
$$
Dividing $(6)$ by $r$, and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
&=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
&=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
end{align}
$$
Plugging in $r=1$ yields
$$
begin{align}
color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
&=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
&=color{#00F}{frac4pi}tag9
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
&=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
&=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
&=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
end{align}
$$
Result used in $boldsymbol{(5)}$:
$$
begin{align}
int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
&=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
&=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
&=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
&=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
&=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
&=2mathrm{G}tag{11}
end{align}
$$
edited Dec 30 '18 at 21:57
answered Dec 30 '18 at 20:38
robjohn♦robjohn
265k27303626
265k27303626
add a comment |
add a comment |
$begingroup$
Fourier-Legendre series provide a very simple derivation. We may recall that
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
$$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals
$$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
$$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
All of them are straightforward, since
$$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
$$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
$$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
hence
$$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$
This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.
$endgroup$
$begingroup$
Jack, your work and contribution to this site are truly remarkable.
$endgroup$
– Klangen
Dec 30 '18 at 21:57
$begingroup$
@Klangen: I'm flattered :)
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 22:46
add a comment |
$begingroup$
Fourier-Legendre series provide a very simple derivation. We may recall that
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
$$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals
$$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
$$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
All of them are straightforward, since
$$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
$$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
$$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
hence
$$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$
This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.
$endgroup$
$begingroup$
Jack, your work and contribution to this site are truly remarkable.
$endgroup$
– Klangen
Dec 30 '18 at 21:57
$begingroup$
@Klangen: I'm flattered :)
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 22:46
add a comment |
$begingroup$
Fourier-Legendre series provide a very simple derivation. We may recall that
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
$$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals
$$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
$$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
All of them are straightforward, since
$$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
$$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
$$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
hence
$$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$
This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.
$endgroup$
Fourier-Legendre series provide a very simple derivation. We may recall that
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
$$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals
$$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
$$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
All of them are straightforward, since
$$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
$$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
$$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
hence
$$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$
This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.
edited Dec 29 '18 at 22:20
answered Dec 29 '18 at 22:14
Jack D'AurizioJack D'Aurizio
288k33280659
288k33280659
$begingroup$
Jack, your work and contribution to this site are truly remarkable.
$endgroup$
– Klangen
Dec 30 '18 at 21:57
$begingroup$
@Klangen: I'm flattered :)
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 22:46
add a comment |
$begingroup$
Jack, your work and contribution to this site are truly remarkable.
$endgroup$
– Klangen
Dec 30 '18 at 21:57
$begingroup$
@Klangen: I'm flattered :)
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 22:46
$begingroup$
Jack, your work and contribution to this site are truly remarkable.
$endgroup$
– Klangen
Dec 30 '18 at 21:57
$begingroup$
Jack, your work and contribution to this site are truly remarkable.
$endgroup$
– Klangen
Dec 30 '18 at 21:57
$begingroup$
@Klangen: I'm flattered :)
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 22:46
$begingroup$
@Klangen: I'm flattered :)
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 22:46
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056291%2fconjecture-sum-limits-n-0-infty2n-choose-n22-4n-fracn6n-12n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
$endgroup$
– Steve Kass
Dec 29 '18 at 21:58