When does $sqrt{4x^3+4y^3+1}$ a natural number?
$begingroup$
If $x$ and $y$ is a natural number, how can we find $y$ in terms of $x$ so the $sqrt{4x^3+4y^3+1}$ is a natural number?
elementary-number-theory
$endgroup$
add a comment |
$begingroup$
If $x$ and $y$ is a natural number, how can we find $y$ in terms of $x$ so the $sqrt{4x^3+4y^3+1}$ is a natural number?
elementary-number-theory
$endgroup$
1
$begingroup$
Is $yinBbb N$ too?
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:22
5
$begingroup$
You could take $y=-x$.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:24
1
$begingroup$
I want to know when does 4x^3 + 4y^3 +1 is perfect square
$endgroup$
– Jerome Aligan
Jan 17 at 7:25
$begingroup$
What have you tried so far?
$endgroup$
– Klangen
Jan 17 at 8:30
add a comment |
$begingroup$
If $x$ and $y$ is a natural number, how can we find $y$ in terms of $x$ so the $sqrt{4x^3+4y^3+1}$ is a natural number?
elementary-number-theory
$endgroup$
If $x$ and $y$ is a natural number, how can we find $y$ in terms of $x$ so the $sqrt{4x^3+4y^3+1}$ is a natural number?
elementary-number-theory
elementary-number-theory
edited Jan 17 at 8:22
Jerome Aligan
asked Jan 17 at 7:20
Jerome AliganJerome Aligan
42
42
1
$begingroup$
Is $yinBbb N$ too?
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:22
5
$begingroup$
You could take $y=-x$.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:24
1
$begingroup$
I want to know when does 4x^3 + 4y^3 +1 is perfect square
$endgroup$
– Jerome Aligan
Jan 17 at 7:25
$begingroup$
What have you tried so far?
$endgroup$
– Klangen
Jan 17 at 8:30
add a comment |
1
$begingroup$
Is $yinBbb N$ too?
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:22
5
$begingroup$
You could take $y=-x$.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:24
1
$begingroup$
I want to know when does 4x^3 + 4y^3 +1 is perfect square
$endgroup$
– Jerome Aligan
Jan 17 at 7:25
$begingroup$
What have you tried so far?
$endgroup$
– Klangen
Jan 17 at 8:30
1
1
$begingroup$
Is $yinBbb N$ too?
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:22
$begingroup$
Is $yinBbb N$ too?
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:22
5
5
$begingroup$
You could take $y=-x$.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:24
$begingroup$
You could take $y=-x$.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:24
1
1
$begingroup$
I want to know when does 4x^3 + 4y^3 +1 is perfect square
$endgroup$
– Jerome Aligan
Jan 17 at 7:25
$begingroup$
I want to know when does 4x^3 + 4y^3 +1 is perfect square
$endgroup$
– Jerome Aligan
Jan 17 at 7:25
$begingroup$
What have you tried so far?
$endgroup$
– Klangen
Jan 17 at 8:30
$begingroup$
What have you tried so far?
$endgroup$
– Klangen
Jan 17 at 8:30
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For one family of solutions set $y=x^2$. Then
$z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$
This gives:
$(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$
There may, of course, be other solutions.
$endgroup$
add a comment |
$begingroup$
$4x^3+4y^3=k^2-1=(k-1)(k+1)$
Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:
$4x^3+4y^3=2m(2m+2)=4m(m+1)$
$x^3+y^3=m(m+1)$
So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$
For example:
$m=1$ ⇒ $1(1+1)=2=1^3+1^3$⇒$k=2+1=3$
$m=8$ ⇒ $8(8+1)=72=4^3+2^3$ ⇒ $k=2.8+1=17$
$m=90$ ⇒ $90(90+1)=8190=19^3+11^3$ ⇒ $k=2.90+1=181$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076685%2fwhen-does-sqrt4x34y31-a-natural-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For one family of solutions set $y=x^2$. Then
$z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$
This gives:
$(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$
There may, of course, be other solutions.
$endgroup$
add a comment |
$begingroup$
For one family of solutions set $y=x^2$. Then
$z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$
This gives:
$(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$
There may, of course, be other solutions.
$endgroup$
add a comment |
$begingroup$
For one family of solutions set $y=x^2$. Then
$z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$
This gives:
$(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$
There may, of course, be other solutions.
$endgroup$
For one family of solutions set $y=x^2$. Then
$z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$
This gives:
$(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$
There may, of course, be other solutions.
answered Jan 17 at 11:31
gandalf61gandalf61
9,263825
9,263825
add a comment |
add a comment |
$begingroup$
$4x^3+4y^3=k^2-1=(k-1)(k+1)$
Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:
$4x^3+4y^3=2m(2m+2)=4m(m+1)$
$x^3+y^3=m(m+1)$
So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$
For example:
$m=1$ ⇒ $1(1+1)=2=1^3+1^3$⇒$k=2+1=3$
$m=8$ ⇒ $8(8+1)=72=4^3+2^3$ ⇒ $k=2.8+1=17$
$m=90$ ⇒ $90(90+1)=8190=19^3+11^3$ ⇒ $k=2.90+1=181$.
$endgroup$
add a comment |
$begingroup$
$4x^3+4y^3=k^2-1=(k-1)(k+1)$
Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:
$4x^3+4y^3=2m(2m+2)=4m(m+1)$
$x^3+y^3=m(m+1)$
So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$
For example:
$m=1$ ⇒ $1(1+1)=2=1^3+1^3$⇒$k=2+1=3$
$m=8$ ⇒ $8(8+1)=72=4^3+2^3$ ⇒ $k=2.8+1=17$
$m=90$ ⇒ $90(90+1)=8190=19^3+11^3$ ⇒ $k=2.90+1=181$.
$endgroup$
add a comment |
$begingroup$
$4x^3+4y^3=k^2-1=(k-1)(k+1)$
Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:
$4x^3+4y^3=2m(2m+2)=4m(m+1)$
$x^3+y^3=m(m+1)$
So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$
For example:
$m=1$ ⇒ $1(1+1)=2=1^3+1^3$⇒$k=2+1=3$
$m=8$ ⇒ $8(8+1)=72=4^3+2^3$ ⇒ $k=2.8+1=17$
$m=90$ ⇒ $90(90+1)=8190=19^3+11^3$ ⇒ $k=2.90+1=181$.
$endgroup$
$4x^3+4y^3=k^2-1=(k-1)(k+1)$
Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:
$4x^3+4y^3=2m(2m+2)=4m(m+1)$
$x^3+y^3=m(m+1)$
So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$
For example:
$m=1$ ⇒ $1(1+1)=2=1^3+1^3$⇒$k=2+1=3$
$m=8$ ⇒ $8(8+1)=72=4^3+2^3$ ⇒ $k=2.8+1=17$
$m=90$ ⇒ $90(90+1)=8190=19^3+11^3$ ⇒ $k=2.90+1=181$.
answered Jan 21 at 5:08
siroussirous
1,6981514
1,6981514
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076685%2fwhen-does-sqrt4x34y31-a-natural-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Is $yinBbb N$ too?
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:22
5
$begingroup$
You could take $y=-x$.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:24
1
$begingroup$
I want to know when does 4x^3 + 4y^3 +1 is perfect square
$endgroup$
– Jerome Aligan
Jan 17 at 7:25
$begingroup$
What have you tried so far?
$endgroup$
– Klangen
Jan 17 at 8:30