When does $sqrt{4x^3+4y^3+1}$ a natural number?












0












$begingroup$


If $x$ and $y$ is a natural number, how can we find $y$ in terms of $x$ so the $sqrt{4x^3+4y^3+1}$ is a natural number?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Is $yinBbb N$ too?
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 7:22








  • 5




    $begingroup$
    You could take $y=-x$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 7:24






  • 1




    $begingroup$
    I want to know when does 4x^3 + 4y^3 +1 is perfect square
    $endgroup$
    – Jerome Aligan
    Jan 17 at 7:25










  • $begingroup$
    What have you tried so far?
    $endgroup$
    – Klangen
    Jan 17 at 8:30
















0












$begingroup$


If $x$ and $y$ is a natural number, how can we find $y$ in terms of $x$ so the $sqrt{4x^3+4y^3+1}$ is a natural number?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Is $yinBbb N$ too?
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 7:22








  • 5




    $begingroup$
    You could take $y=-x$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 7:24






  • 1




    $begingroup$
    I want to know when does 4x^3 + 4y^3 +1 is perfect square
    $endgroup$
    – Jerome Aligan
    Jan 17 at 7:25










  • $begingroup$
    What have you tried so far?
    $endgroup$
    – Klangen
    Jan 17 at 8:30














0












0








0


2



$begingroup$


If $x$ and $y$ is a natural number, how can we find $y$ in terms of $x$ so the $sqrt{4x^3+4y^3+1}$ is a natural number?










share|cite|improve this question











$endgroup$




If $x$ and $y$ is a natural number, how can we find $y$ in terms of $x$ so the $sqrt{4x^3+4y^3+1}$ is a natural number?







elementary-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 8:22







Jerome Aligan

















asked Jan 17 at 7:20









Jerome AliganJerome Aligan

42




42








  • 1




    $begingroup$
    Is $yinBbb N$ too?
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 7:22








  • 5




    $begingroup$
    You could take $y=-x$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 7:24






  • 1




    $begingroup$
    I want to know when does 4x^3 + 4y^3 +1 is perfect square
    $endgroup$
    – Jerome Aligan
    Jan 17 at 7:25










  • $begingroup$
    What have you tried so far?
    $endgroup$
    – Klangen
    Jan 17 at 8:30














  • 1




    $begingroup$
    Is $yinBbb N$ too?
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 7:22








  • 5




    $begingroup$
    You could take $y=-x$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 7:24






  • 1




    $begingroup$
    I want to know when does 4x^3 + 4y^3 +1 is perfect square
    $endgroup$
    – Jerome Aligan
    Jan 17 at 7:25










  • $begingroup$
    What have you tried so far?
    $endgroup$
    – Klangen
    Jan 17 at 8:30








1




1




$begingroup$
Is $yinBbb N$ too?
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:22






$begingroup$
Is $yinBbb N$ too?
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:22






5




5




$begingroup$
You could take $y=-x$.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:24




$begingroup$
You could take $y=-x$.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 7:24




1




1




$begingroup$
I want to know when does 4x^3 + 4y^3 +1 is perfect square
$endgroup$
– Jerome Aligan
Jan 17 at 7:25




$begingroup$
I want to know when does 4x^3 + 4y^3 +1 is perfect square
$endgroup$
– Jerome Aligan
Jan 17 at 7:25












$begingroup$
What have you tried so far?
$endgroup$
– Klangen
Jan 17 at 8:30




$begingroup$
What have you tried so far?
$endgroup$
– Klangen
Jan 17 at 8:30










2 Answers
2






active

oldest

votes


















1












$begingroup$

For one family of solutions set $y=x^2$. Then



$z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$



This gives:



$(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$



There may, of course, be other solutions.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $4x^3+4y^3=k^2-1=(k-1)(k+1)$



    Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:



    $4x^3+4y^3=2m(2m+2)=4m(m+1)$



    $x^3+y^3=m(m+1)$



    So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$



    For example:



    $m=1$$1(1+1)=2=1^3+1^3$$k=2+1=3$



    $m=8$$8(8+1)=72=4^3+2^3$$k=2.8+1=17$



    $m=90$$90(90+1)=8190=19^3+11^3$$k=2.90+1=181$.






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076685%2fwhen-does-sqrt4x34y31-a-natural-number%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      For one family of solutions set $y=x^2$. Then



      $z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$



      This gives:



      $(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$



      There may, of course, be other solutions.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        For one family of solutions set $y=x^2$. Then



        $z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$



        This gives:



        $(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$



        There may, of course, be other solutions.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          For one family of solutions set $y=x^2$. Then



          $z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$



          This gives:



          $(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$



          There may, of course, be other solutions.






          share|cite|improve this answer









          $endgroup$



          For one family of solutions set $y=x^2$. Then



          $z=sqrt{4x^3+4y^3+1}=sqrt{4x^3+4x^6+1}=sqrt{(2x^3+1)^2}=2x^3+1$



          This gives:



          $(x,y,z) = (1,1,3), space (2,4,17), space (3,9,55), dots$



          There may, of course, be other solutions.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 17 at 11:31









          gandalf61gandalf61

          9,263825




          9,263825























              1












              $begingroup$

              $4x^3+4y^3=k^2-1=(k-1)(k+1)$



              Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:



              $4x^3+4y^3=2m(2m+2)=4m(m+1)$



              $x^3+y^3=m(m+1)$



              So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$



              For example:



              $m=1$$1(1+1)=2=1^3+1^3$$k=2+1=3$



              $m=8$$8(8+1)=72=4^3+2^3$$k=2.8+1=17$



              $m=90$$90(90+1)=8190=19^3+11^3$$k=2.90+1=181$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                $4x^3+4y^3=k^2-1=(k-1)(k+1)$



                Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:



                $4x^3+4y^3=2m(2m+2)=4m(m+1)$



                $x^3+y^3=m(m+1)$



                So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$



                For example:



                $m=1$$1(1+1)=2=1^3+1^3$$k=2+1=3$



                $m=8$$8(8+1)=72=4^3+2^3$$k=2.8+1=17$



                $m=90$$90(90+1)=8190=19^3+11^3$$k=2.90+1=181$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $4x^3+4y^3=k^2-1=(k-1)(k+1)$



                  Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:



                  $4x^3+4y^3=2m(2m+2)=4m(m+1)$



                  $x^3+y^3=m(m+1)$



                  So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$



                  For example:



                  $m=1$$1(1+1)=2=1^3+1^3$$k=2+1=3$



                  $m=8$$8(8+1)=72=4^3+2^3$$k=2.8+1=17$



                  $m=90$$90(90+1)=8190=19^3+11^3$$k=2.90+1=181$.






                  share|cite|improve this answer









                  $endgroup$



                  $4x^3+4y^3=k^2-1=(k-1)(k+1)$



                  Since LHS is even RHS is a product of two consecutive even numbers, let $k=2m+1$ we have:



                  $4x^3+4y^3=2m(2m+2)=4m(m+1)$



                  $x^3+y^3=m(m+1)$



                  So whenever $x^3+y^3=m(m+1)$ and $k=2m+1$,then $4x^3+4y^3+1=k^2$



                  For example:



                  $m=1$$1(1+1)=2=1^3+1^3$$k=2+1=3$



                  $m=8$$8(8+1)=72=4^3+2^3$$k=2.8+1=17$



                  $m=90$$90(90+1)=8190=19^3+11^3$$k=2.90+1=181$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 21 at 5:08









                  siroussirous

                  1,6981514




                  1,6981514






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076685%2fwhen-does-sqrt4x34y31-a-natural-number%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      張江高科駅