Proof of Determinant property via definition in linear algebra
$begingroup$
Let A=$(a_{ij})_n$ be a square matrix & B=$(b_{ij})_n$ be another square matrix obtained after interchanging two rows of A, say $p^{th}$ and $q^{th}$. Then |B|=-|A|.
Proof Given:-
We have,
$b_{pj}$ = $a_{qj}$
$b_{qj} = $$a_{pj}$ and
$a_{ij}$ = $b_{ij}$ $forall$ j,i($neq$p,q)
Consider the transposition $tau$=(p q). Note that $S_n$={$sigmacirctau$ | $sigma$ $epsilon$ $S_n$}
Hence,
$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigmacirctau$) $b_{1,sigma circ tau(1)} b_{2,sigma circ tau(2)}b_{p,sigma circ tau(p)}dots b_{q,sigma circtau(q)} b_{n,sigma circ tau(n)}$
$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigma) operatorname{sign}( tau ) b_{1sigma(1)}$$b_{2sigma(2)}$....$b_{psigma(q)}$.....$b_{qsigma(p)}$....$b_{nsigma(n)}$
|B| = sign($tau$) $sum_{sigma epsilon S_n} sign(sigma) a_{1sigma(1)} a_{2sigma(2)}....a_{qsigma(q)}.....a_{psigma(p)}....a_{nsigma(n)}$
|B| = -|A|
My doubts are:-
Upon interchanging rows, the order will not change and hence, won't change the sign($sigma$). Then why sign($sigma$) is being replaced by sign($sigma$ o $tau$)?
How transposition (p q), whose elements represent the row numbers which have been interchanged, been used? Why not some other transposition?
How come $S_n$={$sigma circtau$ | $sigma$ $epsilon$ $S_n$}? How to explain this equality?
See link: Proof of Part 1
Thanks in advance!!
linear-algebra determinant permutation-cycles
$endgroup$
add a comment |
$begingroup$
Let A=$(a_{ij})_n$ be a square matrix & B=$(b_{ij})_n$ be another square matrix obtained after interchanging two rows of A, say $p^{th}$ and $q^{th}$. Then |B|=-|A|.
Proof Given:-
We have,
$b_{pj}$ = $a_{qj}$
$b_{qj} = $$a_{pj}$ and
$a_{ij}$ = $b_{ij}$ $forall$ j,i($neq$p,q)
Consider the transposition $tau$=(p q). Note that $S_n$={$sigmacirctau$ | $sigma$ $epsilon$ $S_n$}
Hence,
$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigmacirctau$) $b_{1,sigma circ tau(1)} b_{2,sigma circ tau(2)}b_{p,sigma circ tau(p)}dots b_{q,sigma circtau(q)} b_{n,sigma circ tau(n)}$
$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigma) operatorname{sign}( tau ) b_{1sigma(1)}$$b_{2sigma(2)}$....$b_{psigma(q)}$.....$b_{qsigma(p)}$....$b_{nsigma(n)}$
|B| = sign($tau$) $sum_{sigma epsilon S_n} sign(sigma) a_{1sigma(1)} a_{2sigma(2)}....a_{qsigma(q)}.....a_{psigma(p)}....a_{nsigma(n)}$
|B| = -|A|
My doubts are:-
Upon interchanging rows, the order will not change and hence, won't change the sign($sigma$). Then why sign($sigma$) is being replaced by sign($sigma$ o $tau$)?
How transposition (p q), whose elements represent the row numbers which have been interchanged, been used? Why not some other transposition?
How come $S_n$={$sigma circtau$ | $sigma$ $epsilon$ $S_n$}? How to explain this equality?
See link: Proof of Part 1
Thanks in advance!!
linear-algebra determinant permutation-cycles
$endgroup$
add a comment |
$begingroup$
Let A=$(a_{ij})_n$ be a square matrix & B=$(b_{ij})_n$ be another square matrix obtained after interchanging two rows of A, say $p^{th}$ and $q^{th}$. Then |B|=-|A|.
Proof Given:-
We have,
$b_{pj}$ = $a_{qj}$
$b_{qj} = $$a_{pj}$ and
$a_{ij}$ = $b_{ij}$ $forall$ j,i($neq$p,q)
Consider the transposition $tau$=(p q). Note that $S_n$={$sigmacirctau$ | $sigma$ $epsilon$ $S_n$}
Hence,
$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigmacirctau$) $b_{1,sigma circ tau(1)} b_{2,sigma circ tau(2)}b_{p,sigma circ tau(p)}dots b_{q,sigma circtau(q)} b_{n,sigma circ tau(n)}$
$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigma) operatorname{sign}( tau ) b_{1sigma(1)}$$b_{2sigma(2)}$....$b_{psigma(q)}$.....$b_{qsigma(p)}$....$b_{nsigma(n)}$
|B| = sign($tau$) $sum_{sigma epsilon S_n} sign(sigma) a_{1sigma(1)} a_{2sigma(2)}....a_{qsigma(q)}.....a_{psigma(p)}....a_{nsigma(n)}$
|B| = -|A|
My doubts are:-
Upon interchanging rows, the order will not change and hence, won't change the sign($sigma$). Then why sign($sigma$) is being replaced by sign($sigma$ o $tau$)?
How transposition (p q), whose elements represent the row numbers which have been interchanged, been used? Why not some other transposition?
How come $S_n$={$sigma circtau$ | $sigma$ $epsilon$ $S_n$}? How to explain this equality?
See link: Proof of Part 1
Thanks in advance!!
linear-algebra determinant permutation-cycles
$endgroup$
Let A=$(a_{ij})_n$ be a square matrix & B=$(b_{ij})_n$ be another square matrix obtained after interchanging two rows of A, say $p^{th}$ and $q^{th}$. Then |B|=-|A|.
Proof Given:-
We have,
$b_{pj}$ = $a_{qj}$
$b_{qj} = $$a_{pj}$ and
$a_{ij}$ = $b_{ij}$ $forall$ j,i($neq$p,q)
Consider the transposition $tau$=(p q). Note that $S_n$={$sigmacirctau$ | $sigma$ $epsilon$ $S_n$}
Hence,
$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigmacirctau$) $b_{1,sigma circ tau(1)} b_{2,sigma circ tau(2)}b_{p,sigma circ tau(p)}dots b_{q,sigma circtau(q)} b_{n,sigma circ tau(n)}$
$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigma) operatorname{sign}( tau ) b_{1sigma(1)}$$b_{2sigma(2)}$....$b_{psigma(q)}$.....$b_{qsigma(p)}$....$b_{nsigma(n)}$
|B| = sign($tau$) $sum_{sigma epsilon S_n} sign(sigma) a_{1sigma(1)} a_{2sigma(2)}....a_{qsigma(q)}.....a_{psigma(p)}....a_{nsigma(n)}$
|B| = -|A|
My doubts are:-
Upon interchanging rows, the order will not change and hence, won't change the sign($sigma$). Then why sign($sigma$) is being replaced by sign($sigma$ o $tau$)?
How transposition (p q), whose elements represent the row numbers which have been interchanged, been used? Why not some other transposition?
How come $S_n$={$sigma circtau$ | $sigma$ $epsilon$ $S_n$}? How to explain this equality?
See link: Proof of Part 1
Thanks in advance!!
linear-algebra determinant permutation-cycles
linear-algebra determinant permutation-cycles
edited Jan 23 at 11:18
Davide Giraudo
128k17156268
128k17156268
asked Jan 17 at 7:07
Onkar SinghOnkar Singh
317
317
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076676%2fproof-of-determinant-property-via-definition-in-linear-algebra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076676%2fproof-of-determinant-property-via-definition-in-linear-algebra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown