Proof of Determinant property via definition in linear algebra












1












$begingroup$


Let A=$(a_{ij})_n$ be a square matrix & B=$(b_{ij})_n$ be another square matrix obtained after interchanging two rows of A, say $p^{th}$ and $q^{th}$. Then |B|=-|A|.



Proof Given:-
We have,



$b_{pj}$ = $a_{qj}$



$b_{qj} = $$a_{pj}$ and



$a_{ij}$ = $b_{ij}$ $forall$ j,i($neq$p,q)



Consider the transposition $tau$=(p q). Note that $S_n$={$sigmacirctau$ | $sigma$ $epsilon$ $S_n$}



Hence,



$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigmacirctau$) $b_{1,sigma circ tau(1)} b_{2,sigma circ tau(2)}b_{p,sigma circ tau(p)}dots b_{q,sigma circtau(q)} b_{n,sigma circ tau(n)}$



$|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigma) operatorname{sign}( tau ) b_{1sigma(1)}$$b_{2sigma(2)}$....$b_{psigma(q)}$.....$b_{qsigma(p)}$....$b_{nsigma(n)}$



|B| = sign($tau$) $sum_{sigma epsilon S_n} sign(sigma) a_{1sigma(1)} a_{2sigma(2)}....a_{qsigma(q)}.....a_{psigma(p)}....a_{nsigma(n)}$



|B| = -|A|



My doubts are:-




  1. Upon interchanging rows, the order will not change and hence, won't change the sign($sigma$). Then why sign($sigma$) is being replaced by sign($sigma$ o $tau$)?


  2. How transposition (p q), whose elements represent the row numbers which have been interchanged, been used? Why not some other transposition?


  3. How come $S_n$={$sigma circtau$ | $sigma$ $epsilon$ $S_n$}? How to explain this equality?



See link: Proof of Part 1



Thanks in advance!!










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let A=$(a_{ij})_n$ be a square matrix & B=$(b_{ij})_n$ be another square matrix obtained after interchanging two rows of A, say $p^{th}$ and $q^{th}$. Then |B|=-|A|.



    Proof Given:-
    We have,



    $b_{pj}$ = $a_{qj}$



    $b_{qj} = $$a_{pj}$ and



    $a_{ij}$ = $b_{ij}$ $forall$ j,i($neq$p,q)



    Consider the transposition $tau$=(p q). Note that $S_n$={$sigmacirctau$ | $sigma$ $epsilon$ $S_n$}



    Hence,



    $|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigmacirctau$) $b_{1,sigma circ tau(1)} b_{2,sigma circ tau(2)}b_{p,sigma circ tau(p)}dots b_{q,sigma circtau(q)} b_{n,sigma circ tau(n)}$



    $|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigma) operatorname{sign}( tau ) b_{1sigma(1)}$$b_{2sigma(2)}$....$b_{psigma(q)}$.....$b_{qsigma(p)}$....$b_{nsigma(n)}$



    |B| = sign($tau$) $sum_{sigma epsilon S_n} sign(sigma) a_{1sigma(1)} a_{2sigma(2)}....a_{qsigma(q)}.....a_{psigma(p)}....a_{nsigma(n)}$



    |B| = -|A|



    My doubts are:-




    1. Upon interchanging rows, the order will not change and hence, won't change the sign($sigma$). Then why sign($sigma$) is being replaced by sign($sigma$ o $tau$)?


    2. How transposition (p q), whose elements represent the row numbers which have been interchanged, been used? Why not some other transposition?


    3. How come $S_n$={$sigma circtau$ | $sigma$ $epsilon$ $S_n$}? How to explain this equality?



    See link: Proof of Part 1



    Thanks in advance!!










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Let A=$(a_{ij})_n$ be a square matrix & B=$(b_{ij})_n$ be another square matrix obtained after interchanging two rows of A, say $p^{th}$ and $q^{th}$. Then |B|=-|A|.



      Proof Given:-
      We have,



      $b_{pj}$ = $a_{qj}$



      $b_{qj} = $$a_{pj}$ and



      $a_{ij}$ = $b_{ij}$ $forall$ j,i($neq$p,q)



      Consider the transposition $tau$=(p q). Note that $S_n$={$sigmacirctau$ | $sigma$ $epsilon$ $S_n$}



      Hence,



      $|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigmacirctau$) $b_{1,sigma circ tau(1)} b_{2,sigma circ tau(2)}b_{p,sigma circ tau(p)}dots b_{q,sigma circtau(q)} b_{n,sigma circ tau(n)}$



      $|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigma) operatorname{sign}( tau ) b_{1sigma(1)}$$b_{2sigma(2)}$....$b_{psigma(q)}$.....$b_{qsigma(p)}$....$b_{nsigma(n)}$



      |B| = sign($tau$) $sum_{sigma epsilon S_n} sign(sigma) a_{1sigma(1)} a_{2sigma(2)}....a_{qsigma(q)}.....a_{psigma(p)}....a_{nsigma(n)}$



      |B| = -|A|



      My doubts are:-




      1. Upon interchanging rows, the order will not change and hence, won't change the sign($sigma$). Then why sign($sigma$) is being replaced by sign($sigma$ o $tau$)?


      2. How transposition (p q), whose elements represent the row numbers which have been interchanged, been used? Why not some other transposition?


      3. How come $S_n$={$sigma circtau$ | $sigma$ $epsilon$ $S_n$}? How to explain this equality?



      See link: Proof of Part 1



      Thanks in advance!!










      share|cite|improve this question











      $endgroup$




      Let A=$(a_{ij})_n$ be a square matrix & B=$(b_{ij})_n$ be another square matrix obtained after interchanging two rows of A, say $p^{th}$ and $q^{th}$. Then |B|=-|A|.



      Proof Given:-
      We have,



      $b_{pj}$ = $a_{qj}$



      $b_{qj} = $$a_{pj}$ and



      $a_{ij}$ = $b_{ij}$ $forall$ j,i($neq$p,q)



      Consider the transposition $tau$=(p q). Note that $S_n$={$sigmacirctau$ | $sigma$ $epsilon$ $S_n$}



      Hence,



      $|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigmacirctau$) $b_{1,sigma circ tau(1)} b_{2,sigma circ tau(2)}b_{p,sigma circ tau(p)}dots b_{q,sigma circtau(q)} b_{n,sigma circ tau(n)}$



      $|B|=sum_{sigma epsilon S_n} = operatorname{sign}(sigma) operatorname{sign}( tau ) b_{1sigma(1)}$$b_{2sigma(2)}$....$b_{psigma(q)}$.....$b_{qsigma(p)}$....$b_{nsigma(n)}$



      |B| = sign($tau$) $sum_{sigma epsilon S_n} sign(sigma) a_{1sigma(1)} a_{2sigma(2)}....a_{qsigma(q)}.....a_{psigma(p)}....a_{nsigma(n)}$



      |B| = -|A|



      My doubts are:-




      1. Upon interchanging rows, the order will not change and hence, won't change the sign($sigma$). Then why sign($sigma$) is being replaced by sign($sigma$ o $tau$)?


      2. How transposition (p q), whose elements represent the row numbers which have been interchanged, been used? Why not some other transposition?


      3. How come $S_n$={$sigma circtau$ | $sigma$ $epsilon$ $S_n$}? How to explain this equality?



      See link: Proof of Part 1



      Thanks in advance!!







      linear-algebra determinant permutation-cycles






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 11:18









      Davide Giraudo

      128k17156268




      128k17156268










      asked Jan 17 at 7:07









      Onkar SinghOnkar Singh

      317




      317






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076676%2fproof-of-determinant-property-via-definition-in-linear-algebra%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076676%2fproof-of-determinant-property-via-definition-in-linear-algebra%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅