Problem on characteristic polynomial of a matrix












2












$begingroup$


Without computing $det(xI-A)$, how to find the characteristic polynomial of $A$ where $A$ is a $4 times 4$ matrix given by:



$$A = begin{bmatrix} 0 & 0 & 0 & -4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 end{bmatrix}$$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:30










  • $begingroup$
    That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:51
















2












$begingroup$


Without computing $det(xI-A)$, how to find the characteristic polynomial of $A$ where $A$ is a $4 times 4$ matrix given by:



$$A = begin{bmatrix} 0 & 0 & 0 & -4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 end{bmatrix}$$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:30










  • $begingroup$
    That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:51














2












2








2


1



$begingroup$


Without computing $det(xI-A)$, how to find the characteristic polynomial of $A$ where $A$ is a $4 times 4$ matrix given by:



$$A = begin{bmatrix} 0 & 0 & 0 & -4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 end{bmatrix}$$










share|cite|improve this question











$endgroup$




Without computing $det(xI-A)$, how to find the characteristic polynomial of $A$ where $A$ is a $4 times 4$ matrix given by:



$$A = begin{bmatrix} 0 & 0 & 0 & -4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 end{bmatrix}$$







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 6:43









Robert Lewis

48.9k23168




48.9k23168










asked Jan 17 at 6:28









Prashant ThakuriPrashant Thakuri

112




112








  • 2




    $begingroup$
    Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:30










  • $begingroup$
    That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:51














  • 2




    $begingroup$
    Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:30










  • $begingroup$
    That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:51








2




2




$begingroup$
Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:30




$begingroup$
Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:30












$begingroup$
That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:51




$begingroup$
That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:51










1 Answer
1






active

oldest

votes


















1












$begingroup$

To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm





In your peculiar case however, your matrix has the form of a companion matrix:



$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$



and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$





In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:



For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$



However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.



Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$





  • $m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)

  • $m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$


  • $m=2$, $text{tr}(A^2)=10$
    $$
    c_{4-2}=frac{(-1)^2}{2!}left|
    begin{array}{cc}
    0 & 2-1 \ 10 & 0
    end{array}
    right|=frac{1}{2}(-10)=-5
    $$


  • $m=3$, $text{tr}(A^3)=0$
    $$
    c_{4-3}=frac{(-1)^3}{3!}left|
    begin{array}{ccc}
    0 & 3-1 & 0 \ 10 & 0 & 3-2 \
    0 & 10 & 0
    end{array}
    right|=frac{-1}{6}(0)=0
    $$


  • $m=4$, $text{tr}(A^4)=34$
    $$
    c_{4-4}=frac{(-1)^4}{4!}left|
    begin{array}{cccc}
    0 & 4-1 & 0 & 0 \
    10 & 0 & 4-2 & 0 \
    0 & 10 & 0 & 4-3 \
    34 & 0 & 10 & 0 \
    end{array}
    right|=frac{1}{24}(96)=4
    $$



Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$



which is hopefully the same answer as the "companion matrix" identification trick.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Probably overkill in this example.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:35










  • $begingroup$
    @LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
    $endgroup$
    – Picaud Vincent
    Jan 17 at 6:38












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076653%2fproblem-on-characteristic-polynomial-of-a-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm





In your peculiar case however, your matrix has the form of a companion matrix:



$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$



and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$





In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:



For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$



However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.



Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$





  • $m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)

  • $m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$


  • $m=2$, $text{tr}(A^2)=10$
    $$
    c_{4-2}=frac{(-1)^2}{2!}left|
    begin{array}{cc}
    0 & 2-1 \ 10 & 0
    end{array}
    right|=frac{1}{2}(-10)=-5
    $$


  • $m=3$, $text{tr}(A^3)=0$
    $$
    c_{4-3}=frac{(-1)^3}{3!}left|
    begin{array}{ccc}
    0 & 3-1 & 0 \ 10 & 0 & 3-2 \
    0 & 10 & 0
    end{array}
    right|=frac{-1}{6}(0)=0
    $$


  • $m=4$, $text{tr}(A^4)=34$
    $$
    c_{4-4}=frac{(-1)^4}{4!}left|
    begin{array}{cccc}
    0 & 4-1 & 0 & 0 \
    10 & 0 & 4-2 & 0 \
    0 & 10 & 0 & 4-3 \
    34 & 0 & 10 & 0 \
    end{array}
    right|=frac{1}{24}(96)=4
    $$



Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$



which is hopefully the same answer as the "companion matrix" identification trick.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Probably overkill in this example.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:35










  • $begingroup$
    @LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
    $endgroup$
    – Picaud Vincent
    Jan 17 at 6:38
















1












$begingroup$

To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm





In your peculiar case however, your matrix has the form of a companion matrix:



$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$



and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$





In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:



For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$



However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.



Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$





  • $m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)

  • $m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$


  • $m=2$, $text{tr}(A^2)=10$
    $$
    c_{4-2}=frac{(-1)^2}{2!}left|
    begin{array}{cc}
    0 & 2-1 \ 10 & 0
    end{array}
    right|=frac{1}{2}(-10)=-5
    $$


  • $m=3$, $text{tr}(A^3)=0$
    $$
    c_{4-3}=frac{(-1)^3}{3!}left|
    begin{array}{ccc}
    0 & 3-1 & 0 \ 10 & 0 & 3-2 \
    0 & 10 & 0
    end{array}
    right|=frac{-1}{6}(0)=0
    $$


  • $m=4$, $text{tr}(A^4)=34$
    $$
    c_{4-4}=frac{(-1)^4}{4!}left|
    begin{array}{cccc}
    0 & 4-1 & 0 & 0 \
    10 & 0 & 4-2 & 0 \
    0 & 10 & 0 & 4-3 \
    34 & 0 & 10 & 0 \
    end{array}
    right|=frac{1}{24}(96)=4
    $$



Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$



which is hopefully the same answer as the "companion matrix" identification trick.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Probably overkill in this example.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:35










  • $begingroup$
    @LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
    $endgroup$
    – Picaud Vincent
    Jan 17 at 6:38














1












1








1





$begingroup$

To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm





In your peculiar case however, your matrix has the form of a companion matrix:



$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$



and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$





In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:



For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$



However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.



Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$





  • $m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)

  • $m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$


  • $m=2$, $text{tr}(A^2)=10$
    $$
    c_{4-2}=frac{(-1)^2}{2!}left|
    begin{array}{cc}
    0 & 2-1 \ 10 & 0
    end{array}
    right|=frac{1}{2}(-10)=-5
    $$


  • $m=3$, $text{tr}(A^3)=0$
    $$
    c_{4-3}=frac{(-1)^3}{3!}left|
    begin{array}{ccc}
    0 & 3-1 & 0 \ 10 & 0 & 3-2 \
    0 & 10 & 0
    end{array}
    right|=frac{-1}{6}(0)=0
    $$


  • $m=4$, $text{tr}(A^4)=34$
    $$
    c_{4-4}=frac{(-1)^4}{4!}left|
    begin{array}{cccc}
    0 & 4-1 & 0 & 0 \
    10 & 0 & 4-2 & 0 \
    0 & 10 & 0 & 4-3 \
    34 & 0 & 10 & 0 \
    end{array}
    right|=frac{1}{24}(96)=4
    $$



Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$



which is hopefully the same answer as the "companion matrix" identification trick.






share|cite|improve this answer











$endgroup$



To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm





In your peculiar case however, your matrix has the form of a companion matrix:



$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$



and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$





In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:



For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$



However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.



Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$





  • $m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)

  • $m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$


  • $m=2$, $text{tr}(A^2)=10$
    $$
    c_{4-2}=frac{(-1)^2}{2!}left|
    begin{array}{cc}
    0 & 2-1 \ 10 & 0
    end{array}
    right|=frac{1}{2}(-10)=-5
    $$


  • $m=3$, $text{tr}(A^3)=0$
    $$
    c_{4-3}=frac{(-1)^3}{3!}left|
    begin{array}{ccc}
    0 & 3-1 & 0 \ 10 & 0 & 3-2 \
    0 & 10 & 0
    end{array}
    right|=frac{-1}{6}(0)=0
    $$


  • $m=4$, $text{tr}(A^4)=34$
    $$
    c_{4-4}=frac{(-1)^4}{4!}left|
    begin{array}{cccc}
    0 & 4-1 & 0 & 0 \
    10 & 0 & 4-2 & 0 \
    0 & 10 & 0 & 4-3 \
    34 & 0 & 10 & 0 \
    end{array}
    right|=frac{1}{24}(96)=4
    $$



Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$



which is hopefully the same answer as the "companion matrix" identification trick.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 17 at 9:44

























answered Jan 17 at 6:33









Picaud VincentPicaud Vincent

1,434310




1,434310








  • 1




    $begingroup$
    Probably overkill in this example.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:35










  • $begingroup$
    @LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
    $endgroup$
    – Picaud Vincent
    Jan 17 at 6:38














  • 1




    $begingroup$
    Probably overkill in this example.
    $endgroup$
    – Lord Shark the Unknown
    Jan 17 at 6:35










  • $begingroup$
    @LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
    $endgroup$
    – Picaud Vincent
    Jan 17 at 6:38








1




1




$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35




$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35












$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38




$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076653%2fproblem-on-characteristic-polynomial-of-a-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg