Problem on characteristic polynomial of a matrix
$begingroup$
Without computing $det(xI-A)$, how to find the characteristic polynomial of $A$ where $A$ is a $4 times 4$ matrix given by:
$$A = begin{bmatrix} 0 & 0 & 0 & -4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 end{bmatrix}$$
linear-algebra
$endgroup$
add a comment |
$begingroup$
Without computing $det(xI-A)$, how to find the characteristic polynomial of $A$ where $A$ is a $4 times 4$ matrix given by:
$$A = begin{bmatrix} 0 & 0 & 0 & -4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 end{bmatrix}$$
linear-algebra
$endgroup$
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:30
$begingroup$
That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:51
add a comment |
$begingroup$
Without computing $det(xI-A)$, how to find the characteristic polynomial of $A$ where $A$ is a $4 times 4$ matrix given by:
$$A = begin{bmatrix} 0 & 0 & 0 & -4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 end{bmatrix}$$
linear-algebra
$endgroup$
Without computing $det(xI-A)$, how to find the characteristic polynomial of $A$ where $A$ is a $4 times 4$ matrix given by:
$$A = begin{bmatrix} 0 & 0 & 0 & -4 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 5 \ 0 & 0 & 1 & 0 end{bmatrix}$$
linear-algebra
linear-algebra
edited Jan 17 at 6:43
Robert Lewis
48.9k23168
48.9k23168
asked Jan 17 at 6:28
Prashant ThakuriPrashant Thakuri
112
112
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:30
$begingroup$
That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:51
add a comment |
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:30
$begingroup$
That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:51
2
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:30
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:30
$begingroup$
That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:51
$begingroup$
That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:51
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm
In your peculiar case however, your matrix has the form of a companion matrix:
$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$
and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$
In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:
For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$
However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.
Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$
$m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)$m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$
$m=2$, $text{tr}(A^2)=10$
$$
c_{4-2}=frac{(-1)^2}{2!}left|
begin{array}{cc}
0 & 2-1 \ 10 & 0
end{array}
right|=frac{1}{2}(-10)=-5
$$$m=3$, $text{tr}(A^3)=0$
$$
c_{4-3}=frac{(-1)^3}{3!}left|
begin{array}{ccc}
0 & 3-1 & 0 \ 10 & 0 & 3-2 \
0 & 10 & 0
end{array}
right|=frac{-1}{6}(0)=0
$$$m=4$, $text{tr}(A^4)=34$
$$
c_{4-4}=frac{(-1)^4}{4!}left|
begin{array}{cccc}
0 & 4-1 & 0 & 0 \
10 & 0 & 4-2 & 0 \
0 & 10 & 0 & 4-3 \
34 & 0 & 10 & 0 \
end{array}
right|=frac{1}{24}(96)=4
$$
Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$
which is hopefully the same answer as the "companion matrix" identification trick.
$endgroup$
1
$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35
$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076653%2fproblem-on-characteristic-polynomial-of-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm
In your peculiar case however, your matrix has the form of a companion matrix:
$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$
and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$
In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:
For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$
However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.
Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$
$m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)$m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$
$m=2$, $text{tr}(A^2)=10$
$$
c_{4-2}=frac{(-1)^2}{2!}left|
begin{array}{cc}
0 & 2-1 \ 10 & 0
end{array}
right|=frac{1}{2}(-10)=-5
$$$m=3$, $text{tr}(A^3)=0$
$$
c_{4-3}=frac{(-1)^3}{3!}left|
begin{array}{ccc}
0 & 3-1 & 0 \ 10 & 0 & 3-2 \
0 & 10 & 0
end{array}
right|=frac{-1}{6}(0)=0
$$$m=4$, $text{tr}(A^4)=34$
$$
c_{4-4}=frac{(-1)^4}{4!}left|
begin{array}{cccc}
0 & 4-1 & 0 & 0 \
10 & 0 & 4-2 & 0 \
0 & 10 & 0 & 4-3 \
34 & 0 & 10 & 0 \
end{array}
right|=frac{1}{24}(96)=4
$$
Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$
which is hopefully the same answer as the "companion matrix" identification trick.
$endgroup$
1
$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35
$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38
add a comment |
$begingroup$
To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm
In your peculiar case however, your matrix has the form of a companion matrix:
$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$
and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$
In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:
For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$
However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.
Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$
$m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)$m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$
$m=2$, $text{tr}(A^2)=10$
$$
c_{4-2}=frac{(-1)^2}{2!}left|
begin{array}{cc}
0 & 2-1 \ 10 & 0
end{array}
right|=frac{1}{2}(-10)=-5
$$$m=3$, $text{tr}(A^3)=0$
$$
c_{4-3}=frac{(-1)^3}{3!}left|
begin{array}{ccc}
0 & 3-1 & 0 \ 10 & 0 & 3-2 \
0 & 10 & 0
end{array}
right|=frac{-1}{6}(0)=0
$$$m=4$, $text{tr}(A^4)=34$
$$
c_{4-4}=frac{(-1)^4}{4!}left|
begin{array}{cccc}
0 & 4-1 & 0 & 0 \
10 & 0 & 4-2 & 0 \
0 & 10 & 0 & 4-3 \
34 & 0 & 10 & 0 \
end{array}
right|=frac{1}{24}(96)=4
$$
Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$
which is hopefully the same answer as the "companion matrix" identification trick.
$endgroup$
1
$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35
$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38
add a comment |
$begingroup$
To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm
In your peculiar case however, your matrix has the form of a companion matrix:
$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$
and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$
In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:
For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$
However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.
Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$
$m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)$m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$
$m=2$, $text{tr}(A^2)=10$
$$
c_{4-2}=frac{(-1)^2}{2!}left|
begin{array}{cc}
0 & 2-1 \ 10 & 0
end{array}
right|=frac{1}{2}(-10)=-5
$$$m=3$, $text{tr}(A^3)=0$
$$
c_{4-3}=frac{(-1)^3}{3!}left|
begin{array}{ccc}
0 & 3-1 & 0 \ 10 & 0 & 3-2 \
0 & 10 & 0
end{array}
right|=frac{-1}{6}(0)=0
$$$m=4$, $text{tr}(A^4)=34$
$$
c_{4-4}=frac{(-1)^4}{4!}left|
begin{array}{cccc}
0 & 4-1 & 0 & 0 \
10 & 0 & 4-2 & 0 \
0 & 10 & 0 & 4-3 \
34 & 0 & 10 & 0 \
end{array}
right|=frac{1}{24}(96)=4
$$
Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$
which is hopefully the same answer as the "companion matrix" identification trick.
$endgroup$
To compute the characteristic polynomial one generally use the Faddeev-LeVerrier algorithm
In your peculiar case however, your matrix has the form of a companion matrix:
$$
A=begin{bmatrix}0&0&dots &0&-c_{0}\1&0&dots &0&-c_{1}\0&1&dots &0&-c_{2}\vdots &vdots &ddots &vdots &vdots \0&0&dots &1&-c_{{n-1}}end{bmatrix}
$$
and by identification the characteristic polynomial is
$$
P(lambda)=sum_{k=0}^m c_k lambda^k=4-5lambda^2+lambda^4
$$
In the general case if you want to play the game of not using $det(lambda I -A)$ you can use the Jacobi formula which can be obtained by "unfoding" the recurrence relation of the Faddeev-LeVerrier algorithm:
For a $A$ a $ntimes n$ matrix, you have
$$
c_{n-m}={frac {(-1)^{m}}{m!}}{begin{vmatrix}text{tr} A&m-1&0&cdots \ text{tr} A^{2}&text{tr} A&m-2&cdots \ vdots &vdots &&&vdots \ text {tr} A^{m-1}&operatorname {tr} A^{m-2}&cdots &cdots &1\ text {tr} A^{m}&operatorname {tr} A^{m-1}&cdots &cdots &operatorname {tr} Aend{vmatrix}}
$$
However there are a lot of computations and it is easier to directly compute $det(lambda I -A)$.
Anyway, here is the details for your example:
$$
A=left(
begin{array}{cccc}
0 & 0 & 0 & -4 \
1 & 0 & 0 & 0 \
0 & 1 & 0 & 5 \
0 & 0 & 1 & 0 \
end{array}
right)
$$
$m=0$ you have $c_4=1$ (the domimant coefficient of the polynomial is always $1$)$m=1$, $text{tr}(A)=0$, hence $c_{4-1}=c_3=0$
$m=2$, $text{tr}(A^2)=10$
$$
c_{4-2}=frac{(-1)^2}{2!}left|
begin{array}{cc}
0 & 2-1 \ 10 & 0
end{array}
right|=frac{1}{2}(-10)=-5
$$$m=3$, $text{tr}(A^3)=0$
$$
c_{4-3}=frac{(-1)^3}{3!}left|
begin{array}{ccc}
0 & 3-1 & 0 \ 10 & 0 & 3-2 \
0 & 10 & 0
end{array}
right|=frac{-1}{6}(0)=0
$$$m=4$, $text{tr}(A^4)=34$
$$
c_{4-4}=frac{(-1)^4}{4!}left|
begin{array}{cccc}
0 & 4-1 & 0 & 0 \
10 & 0 & 4-2 & 0 \
0 & 10 & 0 & 4-3 \
34 & 0 & 10 & 0 \
end{array}
right|=frac{1}{24}(96)=4
$$
Your characteristic polynomial is
$$
P(lambda)=4-5lambda^2+lambda^4
$$
which is hopefully the same answer as the "companion matrix" identification trick.
edited Jan 17 at 9:44
answered Jan 17 at 6:33
Picaud VincentPicaud Vincent
1,434310
1,434310
1
$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35
$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38
add a comment |
1
$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35
$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38
1
1
$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35
$begingroup$
Probably overkill in this example.
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:35
$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38
$begingroup$
@LordSharktheUnknown yes, however I m writing a more compact & detailed example using the Jacobi formula, hold on
$endgroup$
– Picaud Vincent
Jan 17 at 6:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076653%2fproblem-on-characteristic-polynomial-of-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 Anyway, I think that may be a companion matrix...
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:30
$begingroup$
That is a companion matrix: en.wikipedia.org/wiki/Companion_matrix
$endgroup$
– Lord Shark the Unknown
Jan 17 at 6:51