If $x$ and $y$ are acute, and $sin y = 3 cos (x+y) sin x$⁡, then find the maximum value of $tan y$












2












$begingroup$



Given $x,y$ are acute angles such that
$$sin y = 3 cos(x+y)sin x$$
Find the maximum value of $tan ⁡y$.




Attempt:
We have



$$begin{aligned} 3(cos x cos y - sin x sin y) sin x & = sin y \ 3 cos x sin x - 3 sin^2 x tan y & = tan y \ 3 cos x sin x & = tan y(1 +3 sin^2 x) \ tan y & = dfrac{3 sin x cos x} {1+3 sin^2 x} end{aligned}$$



Now, how about the next step? Or maybe I did some mistakes?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
    $endgroup$
    – xbh
    Jan 17 at 6:49
















2












$begingroup$



Given $x,y$ are acute angles such that
$$sin y = 3 cos(x+y)sin x$$
Find the maximum value of $tan ⁡y$.




Attempt:
We have



$$begin{aligned} 3(cos x cos y - sin x sin y) sin x & = sin y \ 3 cos x sin x - 3 sin^2 x tan y & = tan y \ 3 cos x sin x & = tan y(1 +3 sin^2 x) \ tan y & = dfrac{3 sin x cos x} {1+3 sin^2 x} end{aligned}$$



Now, how about the next step? Or maybe I did some mistakes?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
    $endgroup$
    – xbh
    Jan 17 at 6:49














2












2








2





$begingroup$



Given $x,y$ are acute angles such that
$$sin y = 3 cos(x+y)sin x$$
Find the maximum value of $tan ⁡y$.




Attempt:
We have



$$begin{aligned} 3(cos x cos y - sin x sin y) sin x & = sin y \ 3 cos x sin x - 3 sin^2 x tan y & = tan y \ 3 cos x sin x & = tan y(1 +3 sin^2 x) \ tan y & = dfrac{3 sin x cos x} {1+3 sin^2 x} end{aligned}$$



Now, how about the next step? Or maybe I did some mistakes?










share|cite|improve this question











$endgroup$





Given $x,y$ are acute angles such that
$$sin y = 3 cos(x+y)sin x$$
Find the maximum value of $tan ⁡y$.




Attempt:
We have



$$begin{aligned} 3(cos x cos y - sin x sin y) sin x & = sin y \ 3 cos x sin x - 3 sin^2 x tan y & = tan y \ 3 cos x sin x & = tan y(1 +3 sin^2 x) \ tan y & = dfrac{3 sin x cos x} {1+3 sin^2 x} end{aligned}$$



Now, how about the next step? Or maybe I did some mistakes?







trigonometry optimization maxima-minima a.m.-g.m.-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 7:00









Michael Rozenberg

110k1896201




110k1896201










asked Jan 17 at 6:41









Shane Dizzy SukardyShane Dizzy Sukardy

60819




60819








  • 1




    $begingroup$
    I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
    $endgroup$
    – xbh
    Jan 17 at 6:49














  • 1




    $begingroup$
    I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
    $endgroup$
    – xbh
    Jan 17 at 6:49








1




1




$begingroup$
I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
$endgroup$
– xbh
Jan 17 at 6:49




$begingroup$
I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
$endgroup$
– xbh
Jan 17 at 6:49










3 Answers
3






active

oldest

votes


















2












$begingroup$

By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very much, Sir.
    $endgroup$
    – Shane Dizzy Sukardy
    Jan 17 at 7:09










  • $begingroup$
    @Shane Dizzy Sukardy You are welcome!
    $endgroup$
    – Michael Rozenberg
    Jan 17 at 7:10



















1












$begingroup$

Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $$tan y=dfrac{3tan x}{1+4tan^2x}$$



    $$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$



    As $tan x$ is real, the discriminant must be $ge0$



    i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076662%2fif-x-and-y-are-acute-and-sin-y-3-cos-xy-sin-x-then-find-the-max%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
      The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Thank you very much, Sir.
        $endgroup$
        – Shane Dizzy Sukardy
        Jan 17 at 7:09










      • $begingroup$
        @Shane Dizzy Sukardy You are welcome!
        $endgroup$
        – Michael Rozenberg
        Jan 17 at 7:10
















      2












      $begingroup$

      By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
      The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Thank you very much, Sir.
        $endgroup$
        – Shane Dizzy Sukardy
        Jan 17 at 7:09










      • $begingroup$
        @Shane Dizzy Sukardy You are welcome!
        $endgroup$
        – Michael Rozenberg
        Jan 17 at 7:10














      2












      2








      2





      $begingroup$

      By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
      The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.






      share|cite|improve this answer









      $endgroup$



      By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
      The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 17 at 6:56









      Michael RozenbergMichael Rozenberg

      110k1896201




      110k1896201












      • $begingroup$
        Thank you very much, Sir.
        $endgroup$
        – Shane Dizzy Sukardy
        Jan 17 at 7:09










      • $begingroup$
        @Shane Dizzy Sukardy You are welcome!
        $endgroup$
        – Michael Rozenberg
        Jan 17 at 7:10


















      • $begingroup$
        Thank you very much, Sir.
        $endgroup$
        – Shane Dizzy Sukardy
        Jan 17 at 7:09










      • $begingroup$
        @Shane Dizzy Sukardy You are welcome!
        $endgroup$
        – Michael Rozenberg
        Jan 17 at 7:10
















      $begingroup$
      Thank you very much, Sir.
      $endgroup$
      – Shane Dizzy Sukardy
      Jan 17 at 7:09




      $begingroup$
      Thank you very much, Sir.
      $endgroup$
      – Shane Dizzy Sukardy
      Jan 17 at 7:09












      $begingroup$
      @Shane Dizzy Sukardy You are welcome!
      $endgroup$
      – Michael Rozenberg
      Jan 17 at 7:10




      $begingroup$
      @Shane Dizzy Sukardy You are welcome!
      $endgroup$
      – Michael Rozenberg
      Jan 17 at 7:10











      1












      $begingroup$

      Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...






          share|cite|improve this answer









          $endgroup$



          Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 17 at 6:54









          DeepSeaDeepSea

          71.5k54488




          71.5k54488























              0












              $begingroup$

              $$tan y=dfrac{3tan x}{1+4tan^2x}$$



              $$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$



              As $tan x$ is real, the discriminant must be $ge0$



              i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$tan y=dfrac{3tan x}{1+4tan^2x}$$



                $$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$



                As $tan x$ is real, the discriminant must be $ge0$



                i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$tan y=dfrac{3tan x}{1+4tan^2x}$$



                  $$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$



                  As $tan x$ is real, the discriminant must be $ge0$



                  i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$






                  share|cite|improve this answer









                  $endgroup$



                  $$tan y=dfrac{3tan x}{1+4tan^2x}$$



                  $$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$



                  As $tan x$ is real, the discriminant must be $ge0$



                  i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 17 at 14:15









                  lab bhattacharjeelab bhattacharjee

                  228k15159279




                  228k15159279






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076662%2fif-x-and-y-are-acute-and-sin-y-3-cos-xy-sin-x-then-find-the-max%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      張江高科駅