If $x$ and $y$ are acute, and $sin y = 3 cos (x+y) sin x$, then find the maximum value of $tan y$
$begingroup$
Given $x,y$ are acute angles such that
$$sin y = 3 cos(x+y)sin x$$
Find the maximum value of $tan y$.
Attempt:
We have
$$begin{aligned} 3(cos x cos y - sin x sin y) sin x & = sin y \ 3 cos x sin x - 3 sin^2 x tan y & = tan y \ 3 cos x sin x & = tan y(1 +3 sin^2 x) \ tan y & = dfrac{3 sin x cos x} {1+3 sin^2 x} end{aligned}$$
Now, how about the next step? Or maybe I did some mistakes?
trigonometry optimization maxima-minima a.m.-g.m.-inequality
$endgroup$
add a comment |
$begingroup$
Given $x,y$ are acute angles such that
$$sin y = 3 cos(x+y)sin x$$
Find the maximum value of $tan y$.
Attempt:
We have
$$begin{aligned} 3(cos x cos y - sin x sin y) sin x & = sin y \ 3 cos x sin x - 3 sin^2 x tan y & = tan y \ 3 cos x sin x & = tan y(1 +3 sin^2 x) \ tan y & = dfrac{3 sin x cos x} {1+3 sin^2 x} end{aligned}$$
Now, how about the next step? Or maybe I did some mistakes?
trigonometry optimization maxima-minima a.m.-g.m.-inequality
$endgroup$
1
$begingroup$
I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
$endgroup$
– xbh
Jan 17 at 6:49
add a comment |
$begingroup$
Given $x,y$ are acute angles such that
$$sin y = 3 cos(x+y)sin x$$
Find the maximum value of $tan y$.
Attempt:
We have
$$begin{aligned} 3(cos x cos y - sin x sin y) sin x & = sin y \ 3 cos x sin x - 3 sin^2 x tan y & = tan y \ 3 cos x sin x & = tan y(1 +3 sin^2 x) \ tan y & = dfrac{3 sin x cos x} {1+3 sin^2 x} end{aligned}$$
Now, how about the next step? Or maybe I did some mistakes?
trigonometry optimization maxima-minima a.m.-g.m.-inequality
$endgroup$
Given $x,y$ are acute angles such that
$$sin y = 3 cos(x+y)sin x$$
Find the maximum value of $tan y$.
Attempt:
We have
$$begin{aligned} 3(cos x cos y - sin x sin y) sin x & = sin y \ 3 cos x sin x - 3 sin^2 x tan y & = tan y \ 3 cos x sin x & = tan y(1 +3 sin^2 x) \ tan y & = dfrac{3 sin x cos x} {1+3 sin^2 x} end{aligned}$$
Now, how about the next step? Or maybe I did some mistakes?
trigonometry optimization maxima-minima a.m.-g.m.-inequality
trigonometry optimization maxima-minima a.m.-g.m.-inequality
edited Jan 17 at 7:00
Michael Rozenberg
110k1896201
110k1896201
asked Jan 17 at 6:41
Shane Dizzy SukardyShane Dizzy Sukardy
60819
60819
1
$begingroup$
I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
$endgroup$
– xbh
Jan 17 at 6:49
add a comment |
1
$begingroup$
I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
$endgroup$
– xbh
Jan 17 at 6:49
1
1
$begingroup$
I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
$endgroup$
– xbh
Jan 17 at 6:49
$begingroup$
I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
$endgroup$
– xbh
Jan 17 at 6:49
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.
$endgroup$
$begingroup$
Thank you very much, Sir.
$endgroup$
– Shane Dizzy Sukardy
Jan 17 at 7:09
$begingroup$
@Shane Dizzy Sukardy You are welcome!
$endgroup$
– Michael Rozenberg
Jan 17 at 7:10
add a comment |
$begingroup$
Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...
$endgroup$
add a comment |
$begingroup$
$$tan y=dfrac{3tan x}{1+4tan^2x}$$
$$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$
As $tan x$ is real, the discriminant must be $ge0$
i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076662%2fif-x-and-y-are-acute-and-sin-y-3-cos-xy-sin-x-then-find-the-max%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.
$endgroup$
$begingroup$
Thank you very much, Sir.
$endgroup$
– Shane Dizzy Sukardy
Jan 17 at 7:09
$begingroup$
@Shane Dizzy Sukardy You are welcome!
$endgroup$
– Michael Rozenberg
Jan 17 at 7:10
add a comment |
$begingroup$
By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.
$endgroup$
$begingroup$
Thank you very much, Sir.
$endgroup$
– Shane Dizzy Sukardy
Jan 17 at 7:09
$begingroup$
@Shane Dizzy Sukardy You are welcome!
$endgroup$
– Michael Rozenberg
Jan 17 at 7:10
add a comment |
$begingroup$
By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.
$endgroup$
By AM-GM $$tan{y}=frac{3sin{x}cos{x}}{1+3sin^2x}=frac{3sin{x}cos{x}}{cos^2x+4sin^2x}leqfrac{3sin{x}cos{x}}{2sqrt{cos^2xcdot4sin^2x}}=frac{3}{4}.$$
The equality occurs for $cos{x}=2sin{x},$ which says that we got a maximal value.
answered Jan 17 at 6:56
Michael RozenbergMichael Rozenberg
110k1896201
110k1896201
$begingroup$
Thank you very much, Sir.
$endgroup$
– Shane Dizzy Sukardy
Jan 17 at 7:09
$begingroup$
@Shane Dizzy Sukardy You are welcome!
$endgroup$
– Michael Rozenberg
Jan 17 at 7:10
add a comment |
$begingroup$
Thank you very much, Sir.
$endgroup$
– Shane Dizzy Sukardy
Jan 17 at 7:09
$begingroup$
@Shane Dizzy Sukardy You are welcome!
$endgroup$
– Michael Rozenberg
Jan 17 at 7:10
$begingroup$
Thank you very much, Sir.
$endgroup$
– Shane Dizzy Sukardy
Jan 17 at 7:09
$begingroup$
Thank you very much, Sir.
$endgroup$
– Shane Dizzy Sukardy
Jan 17 at 7:09
$begingroup$
@Shane Dizzy Sukardy You are welcome!
$endgroup$
– Michael Rozenberg
Jan 17 at 7:10
$begingroup$
@Shane Dizzy Sukardy You are welcome!
$endgroup$
– Michael Rozenberg
Jan 17 at 7:10
add a comment |
$begingroup$
Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...
$endgroup$
add a comment |
$begingroup$
Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...
$endgroup$
add a comment |
$begingroup$
Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...
$endgroup$
Put $t = tan x$, then $tan y = dfrac{3t}{1+4t^2}le dfrac{3t}{4t} = dfrac{3}{4}$, which is the max of $tan y$ with equality occurs when $t = dfrac{1}{2}$ or $2sin x = cos x$...the rest is simple...
answered Jan 17 at 6:54
DeepSeaDeepSea
71.5k54488
71.5k54488
add a comment |
add a comment |
$begingroup$
$$tan y=dfrac{3tan x}{1+4tan^2x}$$
$$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$
As $tan x$ is real, the discriminant must be $ge0$
i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$
$endgroup$
add a comment |
$begingroup$
$$tan y=dfrac{3tan x}{1+4tan^2x}$$
$$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$
As $tan x$ is real, the discriminant must be $ge0$
i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$
$endgroup$
add a comment |
$begingroup$
$$tan y=dfrac{3tan x}{1+4tan^2x}$$
$$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$
As $tan x$ is real, the discriminant must be $ge0$
i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$
$endgroup$
$$tan y=dfrac{3tan x}{1+4tan^2x}$$
$$iff(4tan y)tan ^2x-3tan x+tan y=0$$ which is a Quadratic Equation $tan x$
As $tan x$ is real, the discriminant must be $ge0$
i.e., $$3^2-4(4tan y)ge0tan yifftan^2yledfrac9{16}iff-dfrac34letan yledfrac34$$
answered Jan 17 at 14:15
lab bhattacharjeelab bhattacharjee
228k15159279
228k15159279
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076662%2fif-x-and-y-are-acute-and-sin-y-3-cos-xy-sin-x-then-find-the-max%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I think now you could use $1 = sin^2 x + cos^2 x$, then divide the top and the bottom by $cos^2 x$ and transform the equation to a fraction of $tan x$.
$endgroup$
– xbh
Jan 17 at 6:49