Help to find a factorization of a matrix into a product and sum of matrices
$begingroup$
if $hspace{0.2cm}$$Zin$ R$^{ntimes n} $ $hspace{0.2cm}$is the down-shift matrix with ones on the first subdiagonal and zeros elsewhere, and $Lin$ R$^{ntimes n} $ $hspace{0.2cm}$ is the lower triangular matrix with $1s$ at the non-zero entries, then the matrix
$$A=left(
begin{array}{ccccc}
w_1 & w_1 &cdots & w_1 \
w_1 & w_2 & cdots& w_2 \
vdots & vdots & ddots& vdots \
w_1 & w_2 & cdots & w_n\
end{array}
right)$$
can be written as $hspace{0.2cm}$ $A=L(D_w-ZD_wZ^T)L^T$$hspace{0.2cm}$ where $hspace{0.2cm}$$D_w=Diag[w_1,cdots,w_n]$
If I have the matrix
$$B=left(
begin{array}{ccccc}
w_1 & w_2 &cdots & w_n \
w_2 & w_2 & cdots& w_n \
vdots & vdots & ddots& vdots \
w_n & w_n & cdots & w_n\
end{array}
right)$$
How can I to factorize it in a similar way to the previous matrix in terms of $Z$ and $L$ ?
linear-algebra matrices factoring
$endgroup$
add a comment |
$begingroup$
if $hspace{0.2cm}$$Zin$ R$^{ntimes n} $ $hspace{0.2cm}$is the down-shift matrix with ones on the first subdiagonal and zeros elsewhere, and $Lin$ R$^{ntimes n} $ $hspace{0.2cm}$ is the lower triangular matrix with $1s$ at the non-zero entries, then the matrix
$$A=left(
begin{array}{ccccc}
w_1 & w_1 &cdots & w_1 \
w_1 & w_2 & cdots& w_2 \
vdots & vdots & ddots& vdots \
w_1 & w_2 & cdots & w_n\
end{array}
right)$$
can be written as $hspace{0.2cm}$ $A=L(D_w-ZD_wZ^T)L^T$$hspace{0.2cm}$ where $hspace{0.2cm}$$D_w=Diag[w_1,cdots,w_n]$
If I have the matrix
$$B=left(
begin{array}{ccccc}
w_1 & w_2 &cdots & w_n \
w_2 & w_2 & cdots& w_n \
vdots & vdots & ddots& vdots \
w_n & w_n & cdots & w_n\
end{array}
right)$$
How can I to factorize it in a similar way to the previous matrix in terms of $Z$ and $L$ ?
linear-algebra matrices factoring
$endgroup$
add a comment |
$begingroup$
if $hspace{0.2cm}$$Zin$ R$^{ntimes n} $ $hspace{0.2cm}$is the down-shift matrix with ones on the first subdiagonal and zeros elsewhere, and $Lin$ R$^{ntimes n} $ $hspace{0.2cm}$ is the lower triangular matrix with $1s$ at the non-zero entries, then the matrix
$$A=left(
begin{array}{ccccc}
w_1 & w_1 &cdots & w_1 \
w_1 & w_2 & cdots& w_2 \
vdots & vdots & ddots& vdots \
w_1 & w_2 & cdots & w_n\
end{array}
right)$$
can be written as $hspace{0.2cm}$ $A=L(D_w-ZD_wZ^T)L^T$$hspace{0.2cm}$ where $hspace{0.2cm}$$D_w=Diag[w_1,cdots,w_n]$
If I have the matrix
$$B=left(
begin{array}{ccccc}
w_1 & w_2 &cdots & w_n \
w_2 & w_2 & cdots& w_n \
vdots & vdots & ddots& vdots \
w_n & w_n & cdots & w_n\
end{array}
right)$$
How can I to factorize it in a similar way to the previous matrix in terms of $Z$ and $L$ ?
linear-algebra matrices factoring
$endgroup$
if $hspace{0.2cm}$$Zin$ R$^{ntimes n} $ $hspace{0.2cm}$is the down-shift matrix with ones on the first subdiagonal and zeros elsewhere, and $Lin$ R$^{ntimes n} $ $hspace{0.2cm}$ is the lower triangular matrix with $1s$ at the non-zero entries, then the matrix
$$A=left(
begin{array}{ccccc}
w_1 & w_1 &cdots & w_1 \
w_1 & w_2 & cdots& w_2 \
vdots & vdots & ddots& vdots \
w_1 & w_2 & cdots & w_n\
end{array}
right)$$
can be written as $hspace{0.2cm}$ $A=L(D_w-ZD_wZ^T)L^T$$hspace{0.2cm}$ where $hspace{0.2cm}$$D_w=Diag[w_1,cdots,w_n]$
If I have the matrix
$$B=left(
begin{array}{ccccc}
w_1 & w_2 &cdots & w_n \
w_2 & w_2 & cdots& w_n \
vdots & vdots & ddots& vdots \
w_n & w_n & cdots & w_n\
end{array}
right)$$
How can I to factorize it in a similar way to the previous matrix in terms of $Z$ and $L$ ?
linear-algebra matrices factoring
linear-algebra matrices factoring
asked Jan 18 at 17:02
mrRmrR
111
111
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $K$ denote the matrix with $1$s on the "antidiagonal", i.e.
$$
K = pmatrix{&&1\&cdots\1}
$$
We note that "flipping" the matrix $B$ gives us
$$
KBK = pmatrix{
w_n&w_n&cdots&w_n\
w_n&w_{n-1}&cdots&w_{n-1}\
vdots & vdots & ddots & vdots\
w_n & w_{n-1} & cdots & w_1}
$$
Let $D_hat w$ denote the matrix $operatorname{Diag}[w_n,w_{n-1},dots,w_1]$ (if you prefer, you could write $D_{hat w} = KD_wK$). Using your decomposition, we have
$$
KBK = L(D_{hat w}-ZD_{hat w}Z^T)L^T implies\
B = KL(D_{hat w}-ZD_{hat w}Z^T)L^TK
$$
Or if you prefer,
$$
B = (KL)(D_{hat w}-ZD_{hat w}Z^T)(KL)^T
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078504%2fhelp-to-find-a-factorization-of-a-matrix-into-a-product-and-sum-of-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $K$ denote the matrix with $1$s on the "antidiagonal", i.e.
$$
K = pmatrix{&&1\&cdots\1}
$$
We note that "flipping" the matrix $B$ gives us
$$
KBK = pmatrix{
w_n&w_n&cdots&w_n\
w_n&w_{n-1}&cdots&w_{n-1}\
vdots & vdots & ddots & vdots\
w_n & w_{n-1} & cdots & w_1}
$$
Let $D_hat w$ denote the matrix $operatorname{Diag}[w_n,w_{n-1},dots,w_1]$ (if you prefer, you could write $D_{hat w} = KD_wK$). Using your decomposition, we have
$$
KBK = L(D_{hat w}-ZD_{hat w}Z^T)L^T implies\
B = KL(D_{hat w}-ZD_{hat w}Z^T)L^TK
$$
Or if you prefer,
$$
B = (KL)(D_{hat w}-ZD_{hat w}Z^T)(KL)^T
$$
$endgroup$
add a comment |
$begingroup$
Let $K$ denote the matrix with $1$s on the "antidiagonal", i.e.
$$
K = pmatrix{&&1\&cdots\1}
$$
We note that "flipping" the matrix $B$ gives us
$$
KBK = pmatrix{
w_n&w_n&cdots&w_n\
w_n&w_{n-1}&cdots&w_{n-1}\
vdots & vdots & ddots & vdots\
w_n & w_{n-1} & cdots & w_1}
$$
Let $D_hat w$ denote the matrix $operatorname{Diag}[w_n,w_{n-1},dots,w_1]$ (if you prefer, you could write $D_{hat w} = KD_wK$). Using your decomposition, we have
$$
KBK = L(D_{hat w}-ZD_{hat w}Z^T)L^T implies\
B = KL(D_{hat w}-ZD_{hat w}Z^T)L^TK
$$
Or if you prefer,
$$
B = (KL)(D_{hat w}-ZD_{hat w}Z^T)(KL)^T
$$
$endgroup$
add a comment |
$begingroup$
Let $K$ denote the matrix with $1$s on the "antidiagonal", i.e.
$$
K = pmatrix{&&1\&cdots\1}
$$
We note that "flipping" the matrix $B$ gives us
$$
KBK = pmatrix{
w_n&w_n&cdots&w_n\
w_n&w_{n-1}&cdots&w_{n-1}\
vdots & vdots & ddots & vdots\
w_n & w_{n-1} & cdots & w_1}
$$
Let $D_hat w$ denote the matrix $operatorname{Diag}[w_n,w_{n-1},dots,w_1]$ (if you prefer, you could write $D_{hat w} = KD_wK$). Using your decomposition, we have
$$
KBK = L(D_{hat w}-ZD_{hat w}Z^T)L^T implies\
B = KL(D_{hat w}-ZD_{hat w}Z^T)L^TK
$$
Or if you prefer,
$$
B = (KL)(D_{hat w}-ZD_{hat w}Z^T)(KL)^T
$$
$endgroup$
Let $K$ denote the matrix with $1$s on the "antidiagonal", i.e.
$$
K = pmatrix{&&1\&cdots\1}
$$
We note that "flipping" the matrix $B$ gives us
$$
KBK = pmatrix{
w_n&w_n&cdots&w_n\
w_n&w_{n-1}&cdots&w_{n-1}\
vdots & vdots & ddots & vdots\
w_n & w_{n-1} & cdots & w_1}
$$
Let $D_hat w$ denote the matrix $operatorname{Diag}[w_n,w_{n-1},dots,w_1]$ (if you prefer, you could write $D_{hat w} = KD_wK$). Using your decomposition, we have
$$
KBK = L(D_{hat w}-ZD_{hat w}Z^T)L^T implies\
B = KL(D_{hat w}-ZD_{hat w}Z^T)L^TK
$$
Or if you prefer,
$$
B = (KL)(D_{hat w}-ZD_{hat w}Z^T)(KL)^T
$$
answered Jan 18 at 17:49
OmnomnomnomOmnomnomnom
129k794188
129k794188
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078504%2fhelp-to-find-a-factorization-of-a-matrix-into-a-product-and-sum-of-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown