Ways to show that $int_{0}^{1}((1-x^r)^{1/r}-x)^ndx=frac{1}{n+1}$
$begingroup$
Through some calculation, I found that for all $r>0$
$$
begin{array}{rcl}
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{2},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 3}}
\
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{4},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 5}}
\
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{6},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 7}}
end{array}
$$
It seems like for $left{n = 2k, r > 0 mid k in mathbb{N}right}$
$$
int_{0}^{1}
left[left(1 - x^{r}right)^{1/r} - xright]^{n}mathrm{d}x = {1 over n + 1}
$$
I want to prove this general form.
Someone suggested to make the substitution
$$y=(1-x^r)^{1/r}$$
So I rewrote the integral into
$$int_{0}^{1}((1-x^r)^{1/r}-x)^ndx=int_{0}^{1}(y-x)^ndx$$
and tried to use the binomial formula:
$$(y-x)^{n}=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}x^{n-k}y^{k}$$
The integral then becomes
$$begin{align}
int_{0}^{1}(y-x)^ndx&=int_{0}^{1}sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}x^{n-k}y^{k}dx\
&=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}int_{0}^{1}x^{n-k}y^{k}dx\
&=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}int_{0}^{1}x^{n-k}(1-x^r)^{k/r}dx\
end{align}$$
Now I think I need to use Beta function:
$$B(x,y) = frac{(x-1)!(y-1)!}{(x+y-1)!}= int_{0}^{1}u^{x-1}(1-u)^{y-1}du=sum_{n=0}^{infty}frac{{binom{n-y}{n}}}{x+n}$$
Am I on the right track? Are here any easier ways to prove the general form?
calculus integration definite-integrals
$endgroup$
|
show 7 more comments
$begingroup$
Through some calculation, I found that for all $r>0$
$$
begin{array}{rcl}
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{2},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 3}}
\
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{4},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 5}}
\
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{6},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 7}}
end{array}
$$
It seems like for $left{n = 2k, r > 0 mid k in mathbb{N}right}$
$$
int_{0}^{1}
left[left(1 - x^{r}right)^{1/r} - xright]^{n}mathrm{d}x = {1 over n + 1}
$$
I want to prove this general form.
Someone suggested to make the substitution
$$y=(1-x^r)^{1/r}$$
So I rewrote the integral into
$$int_{0}^{1}((1-x^r)^{1/r}-x)^ndx=int_{0}^{1}(y-x)^ndx$$
and tried to use the binomial formula:
$$(y-x)^{n}=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}x^{n-k}y^{k}$$
The integral then becomes
$$begin{align}
int_{0}^{1}(y-x)^ndx&=int_{0}^{1}sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}x^{n-k}y^{k}dx\
&=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}int_{0}^{1}x^{n-k}y^{k}dx\
&=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}int_{0}^{1}x^{n-k}(1-x^r)^{k/r}dx\
end{align}$$
Now I think I need to use Beta function:
$$B(x,y) = frac{(x-1)!(y-1)!}{(x+y-1)!}= int_{0}^{1}u^{x-1}(1-u)^{y-1}du=sum_{n=0}^{infty}frac{{binom{n-y}{n}}}{x+n}$$
Am I on the right track? Are here any easier ways to prove the general form?
calculus integration definite-integrals
$endgroup$
$begingroup$
Perhaps the simpler integral (with $r=1$) can be used in an integration-by-parts approach: $frac{Gamma left(1+frac{1}{n}right)^2}{Gamma left(frac{n+2}{n}right)}-frac{1}{2}$
$endgroup$
– David G. Stork
Jan 11 at 23:45
$begingroup$
Note: switching between $n$ and $r$ between the header and the body is very confusing. Sticking with the header notation, and letting, $n=1$ you get the integral $int_0^1 (1-2x)^r,dx$ which is not always $frac 1{r+1}$. If $r=1$, say, you get $0$.
$endgroup$
– lulu
Jan 12 at 0:03
$begingroup$
And, sticking with the header notation and letting $n=2$, we see that $int_0^1 ((1-x^2)^{1/2}-x)^3,dx = frac {3pi}8 -1 approx .1781 neq frac 14$ . Or am I misreading something?
$endgroup$
– lulu
Jan 12 at 0:08
2
$begingroup$
I see, thank you for re-asking the question! It is a nice integral for sure.
$endgroup$
– Zacky
Jan 12 at 0:26
1
$begingroup$
@clathratus: Oops, $u$ should be $y$. I will edit it. Thanks for pointing that out.
$endgroup$
– Larry
Jan 12 at 0:51
|
show 7 more comments
$begingroup$
Through some calculation, I found that for all $r>0$
$$
begin{array}{rcl}
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{2},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 3}}
\
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{4},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 5}}
\
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{6},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 7}}
end{array}
$$
It seems like for $left{n = 2k, r > 0 mid k in mathbb{N}right}$
$$
int_{0}^{1}
left[left(1 - x^{r}right)^{1/r} - xright]^{n}mathrm{d}x = {1 over n + 1}
$$
I want to prove this general form.
Someone suggested to make the substitution
$$y=(1-x^r)^{1/r}$$
So I rewrote the integral into
$$int_{0}^{1}((1-x^r)^{1/r}-x)^ndx=int_{0}^{1}(y-x)^ndx$$
and tried to use the binomial formula:
$$(y-x)^{n}=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}x^{n-k}y^{k}$$
The integral then becomes
$$begin{align}
int_{0}^{1}(y-x)^ndx&=int_{0}^{1}sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}x^{n-k}y^{k}dx\
&=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}int_{0}^{1}x^{n-k}y^{k}dx\
&=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}int_{0}^{1}x^{n-k}(1-x^r)^{k/r}dx\
end{align}$$
Now I think I need to use Beta function:
$$B(x,y) = frac{(x-1)!(y-1)!}{(x+y-1)!}= int_{0}^{1}u^{x-1}(1-u)^{y-1}du=sum_{n=0}^{infty}frac{{binom{n-y}{n}}}{x+n}$$
Am I on the right track? Are here any easier ways to prove the general form?
calculus integration definite-integrals
$endgroup$
Through some calculation, I found that for all $r>0$
$$
begin{array}{rcl}
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{2},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 3}}
\
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{4},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 5}}
\
{displaystyleint_{0}^{1}left[left(1 - x^{r}right)^{1/r} - xright]^{6},mathrm{d}x} & {displaystyle =} &
{displaystyle{1 over 7}}
end{array}
$$
It seems like for $left{n = 2k, r > 0 mid k in mathbb{N}right}$
$$
int_{0}^{1}
left[left(1 - x^{r}right)^{1/r} - xright]^{n}mathrm{d}x = {1 over n + 1}
$$
I want to prove this general form.
Someone suggested to make the substitution
$$y=(1-x^r)^{1/r}$$
So I rewrote the integral into
$$int_{0}^{1}((1-x^r)^{1/r}-x)^ndx=int_{0}^{1}(y-x)^ndx$$
and tried to use the binomial formula:
$$(y-x)^{n}=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}x^{n-k}y^{k}$$
The integral then becomes
$$begin{align}
int_{0}^{1}(y-x)^ndx&=int_{0}^{1}sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}x^{n-k}y^{k}dx\
&=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}int_{0}^{1}x^{n-k}y^{k}dx\
&=sum _{k=0}^{n}{binom {n}{k}}(-1)^{n-k}int_{0}^{1}x^{n-k}(1-x^r)^{k/r}dx\
end{align}$$
Now I think I need to use Beta function:
$$B(x,y) = frac{(x-1)!(y-1)!}{(x+y-1)!}= int_{0}^{1}u^{x-1}(1-u)^{y-1}du=sum_{n=0}^{infty}frac{{binom{n-y}{n}}}{x+n}$$
Am I on the right track? Are here any easier ways to prove the general form?
calculus integration definite-integrals
calculus integration definite-integrals
edited Mar 5 at 0:48
Felix Marin
68.4k7109144
68.4k7109144
asked Jan 11 at 23:26
LarryLarry
2,52831131
2,52831131
$begingroup$
Perhaps the simpler integral (with $r=1$) can be used in an integration-by-parts approach: $frac{Gamma left(1+frac{1}{n}right)^2}{Gamma left(frac{n+2}{n}right)}-frac{1}{2}$
$endgroup$
– David G. Stork
Jan 11 at 23:45
$begingroup$
Note: switching between $n$ and $r$ between the header and the body is very confusing. Sticking with the header notation, and letting, $n=1$ you get the integral $int_0^1 (1-2x)^r,dx$ which is not always $frac 1{r+1}$. If $r=1$, say, you get $0$.
$endgroup$
– lulu
Jan 12 at 0:03
$begingroup$
And, sticking with the header notation and letting $n=2$, we see that $int_0^1 ((1-x^2)^{1/2}-x)^3,dx = frac {3pi}8 -1 approx .1781 neq frac 14$ . Or am I misreading something?
$endgroup$
– lulu
Jan 12 at 0:08
2
$begingroup$
I see, thank you for re-asking the question! It is a nice integral for sure.
$endgroup$
– Zacky
Jan 12 at 0:26
1
$begingroup$
@clathratus: Oops, $u$ should be $y$. I will edit it. Thanks for pointing that out.
$endgroup$
– Larry
Jan 12 at 0:51
|
show 7 more comments
$begingroup$
Perhaps the simpler integral (with $r=1$) can be used in an integration-by-parts approach: $frac{Gamma left(1+frac{1}{n}right)^2}{Gamma left(frac{n+2}{n}right)}-frac{1}{2}$
$endgroup$
– David G. Stork
Jan 11 at 23:45
$begingroup$
Note: switching between $n$ and $r$ between the header and the body is very confusing. Sticking with the header notation, and letting, $n=1$ you get the integral $int_0^1 (1-2x)^r,dx$ which is not always $frac 1{r+1}$. If $r=1$, say, you get $0$.
$endgroup$
– lulu
Jan 12 at 0:03
$begingroup$
And, sticking with the header notation and letting $n=2$, we see that $int_0^1 ((1-x^2)^{1/2}-x)^3,dx = frac {3pi}8 -1 approx .1781 neq frac 14$ . Or am I misreading something?
$endgroup$
– lulu
Jan 12 at 0:08
2
$begingroup$
I see, thank you for re-asking the question! It is a nice integral for sure.
$endgroup$
– Zacky
Jan 12 at 0:26
1
$begingroup$
@clathratus: Oops, $u$ should be $y$. I will edit it. Thanks for pointing that out.
$endgroup$
– Larry
Jan 12 at 0:51
$begingroup$
Perhaps the simpler integral (with $r=1$) can be used in an integration-by-parts approach: $frac{Gamma left(1+frac{1}{n}right)^2}{Gamma left(frac{n+2}{n}right)}-frac{1}{2}$
$endgroup$
– David G. Stork
Jan 11 at 23:45
$begingroup$
Perhaps the simpler integral (with $r=1$) can be used in an integration-by-parts approach: $frac{Gamma left(1+frac{1}{n}right)^2}{Gamma left(frac{n+2}{n}right)}-frac{1}{2}$
$endgroup$
– David G. Stork
Jan 11 at 23:45
$begingroup$
Note: switching between $n$ and $r$ between the header and the body is very confusing. Sticking with the header notation, and letting, $n=1$ you get the integral $int_0^1 (1-2x)^r,dx$ which is not always $frac 1{r+1}$. If $r=1$, say, you get $0$.
$endgroup$
– lulu
Jan 12 at 0:03
$begingroup$
Note: switching between $n$ and $r$ between the header and the body is very confusing. Sticking with the header notation, and letting, $n=1$ you get the integral $int_0^1 (1-2x)^r,dx$ which is not always $frac 1{r+1}$. If $r=1$, say, you get $0$.
$endgroup$
– lulu
Jan 12 at 0:03
$begingroup$
And, sticking with the header notation and letting $n=2$, we see that $int_0^1 ((1-x^2)^{1/2}-x)^3,dx = frac {3pi}8 -1 approx .1781 neq frac 14$ . Or am I misreading something?
$endgroup$
– lulu
Jan 12 at 0:08
$begingroup$
And, sticking with the header notation and letting $n=2$, we see that $int_0^1 ((1-x^2)^{1/2}-x)^3,dx = frac {3pi}8 -1 approx .1781 neq frac 14$ . Or am I misreading something?
$endgroup$
– lulu
Jan 12 at 0:08
2
2
$begingroup$
I see, thank you for re-asking the question! It is a nice integral for sure.
$endgroup$
– Zacky
Jan 12 at 0:26
$begingroup$
I see, thank you for re-asking the question! It is a nice integral for sure.
$endgroup$
– Zacky
Jan 12 at 0:26
1
1
$begingroup$
@clathratus: Oops, $u$ should be $y$. I will edit it. Thanks for pointing that out.
$endgroup$
– Larry
Jan 12 at 0:51
$begingroup$
@clathratus: Oops, $u$ should be $y$. I will edit it. Thanks for pointing that out.
$endgroup$
– Larry
Jan 12 at 0:51
|
show 7 more comments
4 Answers
4
active
oldest
votes
$begingroup$
We present 3 different solutions.
Solution 1 - slick substitution. We prove a more general statement:
Proposition. Let $R in (0, infty]$ and let $varphi : [0, R] to [0, R]$ satisfy the following conditions:
$varphi$ is continuous on $[0, R]$;
$varphi(0) = R$ and $varphi(R) = 0$;
$varphi$ is bijective and $varphi^{-1} = varphi$.
Then for any integrable function $f$ on $[0, R]$,
$$ int_{0}^{R} f(|x-varphi(x)|) , mathrm{d}x = int_{0}^{R} f(x) , mathrm{d}x. $$
Proof. In case $varphi$ is also continuously differentiable on $(0, R)$, by the substitution $y = varphi(x)$, or equivalently, $x = varphi(y)$,
$$ I
:= int_{0}^{R} f( |x - varphi(x)| ) , mathrm{d}x
= -int_{0}^{R} f( |varphi(y) - y| ) varphi'(y) , mathrm{d}y. $$
Summing two integrals,
begin{align*}
2I
&= int_{0}^{R} f( |x - varphi(x)| ) (1 - varphi'(x)) , mathrm{d}x \
&= int_{-R}^{R} f( |u| ) , mathrm{d}u = 2int_{0}^{R} f(u) , mathrm{d}u, tag{$u = x - varphi(x)$}
end{align*}
proving the claim when $varphi$ is continuously differentiable. This proof can be easily adapted to general $varphi$ by using Stieltjes integral. ■
Now plug $varphi(x) = (1-x^r)^{1/r}$ with $R = 1$ and $f(x) = x^n$ for positive even integer $n$. Then
$$ int_{0}^{1} left( (1-x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{0}^{1} left| x - (1-x^r)^{1/r} right|^n , mathrm{d}x
= int_{0}^{1} x^n , mathrm{d}x
= frac{1}{n+1}. $$
Solution 2 - using beta function. Here is an anternative solution. Write $p = 1/r$. Then using the substitution $x = u^p$,
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= int_{0}^{1} left( (1 - u)^{p} - u^p right)^{n} pu^{p-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p int_{0}^{1} (1-u)^{p(n-k)} u^{p(k+1)-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p cdot frac{(p(n-k))!(p(k+1)-1)!}{(p(n+1))!}
end{align*}
Here, $s! = Gamma(s+1)$. Now define $a_k = (pk)!/k!$. Then the above sum simplifies to
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= frac{1}{(n+1)a_{n+1}} sum_{k=0}^{n} (-1)^k a_{n-k}a_{k+1} \
&= frac{1}{(n+1)a_{n+1}} left( a_0 a_{n+1} + sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} right).
end{align*}
So it suffices to show that $sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} = 0$. But by the substitution $l = n-1-k$, we have
$$ sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1}
= - sum_{l=0}^{n-1} (-1)^l a_{l+1}a_{n-l}. $$
(Here the parity of $n$ is used.) So the sum equals its negation, hence is zero as required.
Solution 3 - using multivariate calculus. Let $mathcal{C}_r$ denote the curve defined by $x^r + y^r = 1$ in the first quadrant, oriented to the right. Then
$$ I(r) := int_{0}^{1} left( (1 -x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{mathcal{C}_r} ( y - x )^n , mathrm{d}x. $$
Notice that if $0 < r < s$, then $mathcal{C}_s$ lies above $mathcal{C}_r$, and so, the curve $mathcal{C}_r - mathcal{C}_s$ bounds some region, which we denote by $mathcal{D}$, counter-clockwise:
$hspace{10em}$
Then by Green's theorem,
$$ I(r) - I(s)
= int_{partial mathcal{D}} ( y - x )^n , mathrm{d}x
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
But since the region $mathcal{D}$ is symmetric around $y = x$ and $n$ is even, interchanging the roles of $x$ and $y$ shows
$$ iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y
= iint_{mathcal{D}} n (x - y)^{n-1} , mathrm{d}xmathrm{d}y
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
Therefore $I(r) = I(s)$ for any $ r < s$, and in particular, letting $s to infty$ gives
$$ I(r) = int _{0}^{1} (1 - x)^n , mathrm{d}x = frac{1}{n+1}. $$
$endgroup$
1
$begingroup$
Beautiful! This looks like Glasser's Master theorem little brother :D
$endgroup$
– Zacky
Jan 12 at 1:02
$begingroup$
Was it necessary to start with absolute value in the argument of function?
$endgroup$
– user
Jan 12 at 1:04
$begingroup$
@user, It is kind of necessary, in the sense that $$ int_{0}^{1} gleft(x-(1-x^r)^{1/r}right) , mathrm{d}x = int_{0}^{1} g(u) , mathrm{d}u $$ may fail if $g$ is not an even function on $[-1, 1]$.
$endgroup$
– Sangchul Lee
Jan 12 at 1:06
1
$begingroup$
@Zacky, Both Glasser's master theorem and my answer deals with specific examples of measure-preserving transformations, hence the conclusion should look similar. Of course, the beauty of Glasser's result is that its proof is very elementary. (The result itself was known much prior to his paper.)
$endgroup$
– Sangchul Lee
Jan 12 at 1:12
$begingroup$
@SangchulLee: You mentioned to use the fact that $|x - varphi(x)|^n = (varphi(x) - x)^n$. Is there a name for this fact. I don't quite understand how you get there.
$endgroup$
– Larry
Jan 27 at 23:17
|
show 3 more comments
$begingroup$
Here's your Beta integral
$$S=int_0^1x^{n-k}(1-x^r)^{k/r}dx$$
Setting $w=x^r$, we see that
$$S=frac1rint_0^1w^{frac{n+1-k-r}r}(1-w)^{k/r}dw$$
$$S=frac1rint_0^1w^{frac{n+1-k}r-1}(1-w)^{frac{k+r}r-1}dw$$
$$S=frac1rmathrm{B}bigg(frac{n+1-k}r,frac{k+r}rbigg)$$
So
$$I(r,n)=int_0^1[(1-x^r)^{1/r}-x]^ndx$$
$$I(r,n)=frac1rsum_{k=0}^{n}(-1)^{n-k}{nchoose k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(1+frac{n+1}r)}$$
$$I(r,n)=frac1{r}frac{Gamma(n+1)}{Gamma(1+frac{n+1}r)}sum_{k=0}^{n}(-1)^{n-k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(k+1)Gamma(n-k+1)}$$
Which is a closed form
$endgroup$
1
$begingroup$
Try to find an error in your derivation as $I(r,n)=frac{1}{n+1}$ for even $n$ and any $r$.
$endgroup$
– user
Jan 12 at 1:45
$begingroup$
@user Ah yes I forgot $n$ was even
$endgroup$
– clathratus
Jan 12 at 1:57
1
$begingroup$
Nice approach. Seems almost obvious after reading it, but I was stuck when I first saw it (+1)
$endgroup$
– DavidG
Jan 12 at 5:31
add a comment |
$begingroup$
Here's a proof with Hypergeometirc function.
We have
$$
underset{j=1}{overset{2 n+1}{sum }}
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=left(left(1-x^rright)^{1/r}-xright)^{2 n}
$$
by binomial expansion.
It is easy to verify that
$$
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=
frac{mathrm d}{mathrm d x}left(
frac{1}{2 n+1}
(-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright)
right)
$$
Therefore, we have
$$
int((1-x^r)^{1/r}-x)^{2 n} mathrm dx
=
sum _{j=1}^{2 n+1} frac{1}{2 n+1} (-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright).
$$
When $j=2n+1$, the summand in the right hand equals $frac{x^{2 n+1}}{2 n+1}$. This is the term which gives us $frac 1 {2n+1}$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.int_{0}^{1}bracks{pars{1 - x^{r}}^{1/r} - x}^{2k},dd x,rightvert_{{large r > 0} atop
{large k in mathbb{N}_{geq 0}}}}
\[5mm] stackrel{x^{large r} mapsto x}{=},,,&
int_{0}^{1}bracks{pars{1 - x}^{1/r} - x^{1/r}}^{2k},{1 over r},
x^{1/r - 1},dd x
\[5mm]
,,,stackrel{x mapsto x + 1/2}{=},,,&
{1 over r}int_{-1/2}^{1/2}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k},
pars{{1 over 2} + x}^{1/r - 1},dd x
\[5mm] = &
{1 over r}int_{0}^{1/2}!!bracks{!!pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x!}^{1/r}}^{2k}!
bracks{!pars{{1 over 2} + x}^{1/r - 1} +
pars{{1 over 2} - x}^{1/r - 1}!}!dd x
\[5mm] = &
-int_{0}^{1/2}{1 over 2k + 1},partiald{}{x}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1},dd x
\[5mm] = &
underbrace{braces{-bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1}}_{x = 0}^{x = 1/2}}
_{ds{= 1 - 0 = 1}},,,{1 over 2k + 1} =
bbx{1 over 2k + 1}
end{align}
$endgroup$
$begingroup$
Nice solution, (+1).
$endgroup$
– Larry
Mar 5 at 13:19
$begingroup$
Thanks @Larry .
$endgroup$
– Felix Marin
Mar 5 at 15:23
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070440%2fways-to-show-that-int-011-xr1-r-xndx-frac1n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We present 3 different solutions.
Solution 1 - slick substitution. We prove a more general statement:
Proposition. Let $R in (0, infty]$ and let $varphi : [0, R] to [0, R]$ satisfy the following conditions:
$varphi$ is continuous on $[0, R]$;
$varphi(0) = R$ and $varphi(R) = 0$;
$varphi$ is bijective and $varphi^{-1} = varphi$.
Then for any integrable function $f$ on $[0, R]$,
$$ int_{0}^{R} f(|x-varphi(x)|) , mathrm{d}x = int_{0}^{R} f(x) , mathrm{d}x. $$
Proof. In case $varphi$ is also continuously differentiable on $(0, R)$, by the substitution $y = varphi(x)$, or equivalently, $x = varphi(y)$,
$$ I
:= int_{0}^{R} f( |x - varphi(x)| ) , mathrm{d}x
= -int_{0}^{R} f( |varphi(y) - y| ) varphi'(y) , mathrm{d}y. $$
Summing two integrals,
begin{align*}
2I
&= int_{0}^{R} f( |x - varphi(x)| ) (1 - varphi'(x)) , mathrm{d}x \
&= int_{-R}^{R} f( |u| ) , mathrm{d}u = 2int_{0}^{R} f(u) , mathrm{d}u, tag{$u = x - varphi(x)$}
end{align*}
proving the claim when $varphi$ is continuously differentiable. This proof can be easily adapted to general $varphi$ by using Stieltjes integral. ■
Now plug $varphi(x) = (1-x^r)^{1/r}$ with $R = 1$ and $f(x) = x^n$ for positive even integer $n$. Then
$$ int_{0}^{1} left( (1-x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{0}^{1} left| x - (1-x^r)^{1/r} right|^n , mathrm{d}x
= int_{0}^{1} x^n , mathrm{d}x
= frac{1}{n+1}. $$
Solution 2 - using beta function. Here is an anternative solution. Write $p = 1/r$. Then using the substitution $x = u^p$,
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= int_{0}^{1} left( (1 - u)^{p} - u^p right)^{n} pu^{p-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p int_{0}^{1} (1-u)^{p(n-k)} u^{p(k+1)-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p cdot frac{(p(n-k))!(p(k+1)-1)!}{(p(n+1))!}
end{align*}
Here, $s! = Gamma(s+1)$. Now define $a_k = (pk)!/k!$. Then the above sum simplifies to
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= frac{1}{(n+1)a_{n+1}} sum_{k=0}^{n} (-1)^k a_{n-k}a_{k+1} \
&= frac{1}{(n+1)a_{n+1}} left( a_0 a_{n+1} + sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} right).
end{align*}
So it suffices to show that $sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} = 0$. But by the substitution $l = n-1-k$, we have
$$ sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1}
= - sum_{l=0}^{n-1} (-1)^l a_{l+1}a_{n-l}. $$
(Here the parity of $n$ is used.) So the sum equals its negation, hence is zero as required.
Solution 3 - using multivariate calculus. Let $mathcal{C}_r$ denote the curve defined by $x^r + y^r = 1$ in the first quadrant, oriented to the right. Then
$$ I(r) := int_{0}^{1} left( (1 -x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{mathcal{C}_r} ( y - x )^n , mathrm{d}x. $$
Notice that if $0 < r < s$, then $mathcal{C}_s$ lies above $mathcal{C}_r$, and so, the curve $mathcal{C}_r - mathcal{C}_s$ bounds some region, which we denote by $mathcal{D}$, counter-clockwise:
$hspace{10em}$
Then by Green's theorem,
$$ I(r) - I(s)
= int_{partial mathcal{D}} ( y - x )^n , mathrm{d}x
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
But since the region $mathcal{D}$ is symmetric around $y = x$ and $n$ is even, interchanging the roles of $x$ and $y$ shows
$$ iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y
= iint_{mathcal{D}} n (x - y)^{n-1} , mathrm{d}xmathrm{d}y
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
Therefore $I(r) = I(s)$ for any $ r < s$, and in particular, letting $s to infty$ gives
$$ I(r) = int _{0}^{1} (1 - x)^n , mathrm{d}x = frac{1}{n+1}. $$
$endgroup$
1
$begingroup$
Beautiful! This looks like Glasser's Master theorem little brother :D
$endgroup$
– Zacky
Jan 12 at 1:02
$begingroup$
Was it necessary to start with absolute value in the argument of function?
$endgroup$
– user
Jan 12 at 1:04
$begingroup$
@user, It is kind of necessary, in the sense that $$ int_{0}^{1} gleft(x-(1-x^r)^{1/r}right) , mathrm{d}x = int_{0}^{1} g(u) , mathrm{d}u $$ may fail if $g$ is not an even function on $[-1, 1]$.
$endgroup$
– Sangchul Lee
Jan 12 at 1:06
1
$begingroup$
@Zacky, Both Glasser's master theorem and my answer deals with specific examples of measure-preserving transformations, hence the conclusion should look similar. Of course, the beauty of Glasser's result is that its proof is very elementary. (The result itself was known much prior to his paper.)
$endgroup$
– Sangchul Lee
Jan 12 at 1:12
$begingroup$
@SangchulLee: You mentioned to use the fact that $|x - varphi(x)|^n = (varphi(x) - x)^n$. Is there a name for this fact. I don't quite understand how you get there.
$endgroup$
– Larry
Jan 27 at 23:17
|
show 3 more comments
$begingroup$
We present 3 different solutions.
Solution 1 - slick substitution. We prove a more general statement:
Proposition. Let $R in (0, infty]$ and let $varphi : [0, R] to [0, R]$ satisfy the following conditions:
$varphi$ is continuous on $[0, R]$;
$varphi(0) = R$ and $varphi(R) = 0$;
$varphi$ is bijective and $varphi^{-1} = varphi$.
Then for any integrable function $f$ on $[0, R]$,
$$ int_{0}^{R} f(|x-varphi(x)|) , mathrm{d}x = int_{0}^{R} f(x) , mathrm{d}x. $$
Proof. In case $varphi$ is also continuously differentiable on $(0, R)$, by the substitution $y = varphi(x)$, or equivalently, $x = varphi(y)$,
$$ I
:= int_{0}^{R} f( |x - varphi(x)| ) , mathrm{d}x
= -int_{0}^{R} f( |varphi(y) - y| ) varphi'(y) , mathrm{d}y. $$
Summing two integrals,
begin{align*}
2I
&= int_{0}^{R} f( |x - varphi(x)| ) (1 - varphi'(x)) , mathrm{d}x \
&= int_{-R}^{R} f( |u| ) , mathrm{d}u = 2int_{0}^{R} f(u) , mathrm{d}u, tag{$u = x - varphi(x)$}
end{align*}
proving the claim when $varphi$ is continuously differentiable. This proof can be easily adapted to general $varphi$ by using Stieltjes integral. ■
Now plug $varphi(x) = (1-x^r)^{1/r}$ with $R = 1$ and $f(x) = x^n$ for positive even integer $n$. Then
$$ int_{0}^{1} left( (1-x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{0}^{1} left| x - (1-x^r)^{1/r} right|^n , mathrm{d}x
= int_{0}^{1} x^n , mathrm{d}x
= frac{1}{n+1}. $$
Solution 2 - using beta function. Here is an anternative solution. Write $p = 1/r$. Then using the substitution $x = u^p$,
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= int_{0}^{1} left( (1 - u)^{p} - u^p right)^{n} pu^{p-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p int_{0}^{1} (1-u)^{p(n-k)} u^{p(k+1)-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p cdot frac{(p(n-k))!(p(k+1)-1)!}{(p(n+1))!}
end{align*}
Here, $s! = Gamma(s+1)$. Now define $a_k = (pk)!/k!$. Then the above sum simplifies to
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= frac{1}{(n+1)a_{n+1}} sum_{k=0}^{n} (-1)^k a_{n-k}a_{k+1} \
&= frac{1}{(n+1)a_{n+1}} left( a_0 a_{n+1} + sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} right).
end{align*}
So it suffices to show that $sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} = 0$. But by the substitution $l = n-1-k$, we have
$$ sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1}
= - sum_{l=0}^{n-1} (-1)^l a_{l+1}a_{n-l}. $$
(Here the parity of $n$ is used.) So the sum equals its negation, hence is zero as required.
Solution 3 - using multivariate calculus. Let $mathcal{C}_r$ denote the curve defined by $x^r + y^r = 1$ in the first quadrant, oriented to the right. Then
$$ I(r) := int_{0}^{1} left( (1 -x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{mathcal{C}_r} ( y - x )^n , mathrm{d}x. $$
Notice that if $0 < r < s$, then $mathcal{C}_s$ lies above $mathcal{C}_r$, and so, the curve $mathcal{C}_r - mathcal{C}_s$ bounds some region, which we denote by $mathcal{D}$, counter-clockwise:
$hspace{10em}$
Then by Green's theorem,
$$ I(r) - I(s)
= int_{partial mathcal{D}} ( y - x )^n , mathrm{d}x
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
But since the region $mathcal{D}$ is symmetric around $y = x$ and $n$ is even, interchanging the roles of $x$ and $y$ shows
$$ iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y
= iint_{mathcal{D}} n (x - y)^{n-1} , mathrm{d}xmathrm{d}y
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
Therefore $I(r) = I(s)$ for any $ r < s$, and in particular, letting $s to infty$ gives
$$ I(r) = int _{0}^{1} (1 - x)^n , mathrm{d}x = frac{1}{n+1}. $$
$endgroup$
1
$begingroup$
Beautiful! This looks like Glasser's Master theorem little brother :D
$endgroup$
– Zacky
Jan 12 at 1:02
$begingroup$
Was it necessary to start with absolute value in the argument of function?
$endgroup$
– user
Jan 12 at 1:04
$begingroup$
@user, It is kind of necessary, in the sense that $$ int_{0}^{1} gleft(x-(1-x^r)^{1/r}right) , mathrm{d}x = int_{0}^{1} g(u) , mathrm{d}u $$ may fail if $g$ is not an even function on $[-1, 1]$.
$endgroup$
– Sangchul Lee
Jan 12 at 1:06
1
$begingroup$
@Zacky, Both Glasser's master theorem and my answer deals with specific examples of measure-preserving transformations, hence the conclusion should look similar. Of course, the beauty of Glasser's result is that its proof is very elementary. (The result itself was known much prior to his paper.)
$endgroup$
– Sangchul Lee
Jan 12 at 1:12
$begingroup$
@SangchulLee: You mentioned to use the fact that $|x - varphi(x)|^n = (varphi(x) - x)^n$. Is there a name for this fact. I don't quite understand how you get there.
$endgroup$
– Larry
Jan 27 at 23:17
|
show 3 more comments
$begingroup$
We present 3 different solutions.
Solution 1 - slick substitution. We prove a more general statement:
Proposition. Let $R in (0, infty]$ and let $varphi : [0, R] to [0, R]$ satisfy the following conditions:
$varphi$ is continuous on $[0, R]$;
$varphi(0) = R$ and $varphi(R) = 0$;
$varphi$ is bijective and $varphi^{-1} = varphi$.
Then for any integrable function $f$ on $[0, R]$,
$$ int_{0}^{R} f(|x-varphi(x)|) , mathrm{d}x = int_{0}^{R} f(x) , mathrm{d}x. $$
Proof. In case $varphi$ is also continuously differentiable on $(0, R)$, by the substitution $y = varphi(x)$, or equivalently, $x = varphi(y)$,
$$ I
:= int_{0}^{R} f( |x - varphi(x)| ) , mathrm{d}x
= -int_{0}^{R} f( |varphi(y) - y| ) varphi'(y) , mathrm{d}y. $$
Summing two integrals,
begin{align*}
2I
&= int_{0}^{R} f( |x - varphi(x)| ) (1 - varphi'(x)) , mathrm{d}x \
&= int_{-R}^{R} f( |u| ) , mathrm{d}u = 2int_{0}^{R} f(u) , mathrm{d}u, tag{$u = x - varphi(x)$}
end{align*}
proving the claim when $varphi$ is continuously differentiable. This proof can be easily adapted to general $varphi$ by using Stieltjes integral. ■
Now plug $varphi(x) = (1-x^r)^{1/r}$ with $R = 1$ and $f(x) = x^n$ for positive even integer $n$. Then
$$ int_{0}^{1} left( (1-x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{0}^{1} left| x - (1-x^r)^{1/r} right|^n , mathrm{d}x
= int_{0}^{1} x^n , mathrm{d}x
= frac{1}{n+1}. $$
Solution 2 - using beta function. Here is an anternative solution. Write $p = 1/r$. Then using the substitution $x = u^p$,
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= int_{0}^{1} left( (1 - u)^{p} - u^p right)^{n} pu^{p-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p int_{0}^{1} (1-u)^{p(n-k)} u^{p(k+1)-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p cdot frac{(p(n-k))!(p(k+1)-1)!}{(p(n+1))!}
end{align*}
Here, $s! = Gamma(s+1)$. Now define $a_k = (pk)!/k!$. Then the above sum simplifies to
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= frac{1}{(n+1)a_{n+1}} sum_{k=0}^{n} (-1)^k a_{n-k}a_{k+1} \
&= frac{1}{(n+1)a_{n+1}} left( a_0 a_{n+1} + sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} right).
end{align*}
So it suffices to show that $sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} = 0$. But by the substitution $l = n-1-k$, we have
$$ sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1}
= - sum_{l=0}^{n-1} (-1)^l a_{l+1}a_{n-l}. $$
(Here the parity of $n$ is used.) So the sum equals its negation, hence is zero as required.
Solution 3 - using multivariate calculus. Let $mathcal{C}_r$ denote the curve defined by $x^r + y^r = 1$ in the first quadrant, oriented to the right. Then
$$ I(r) := int_{0}^{1} left( (1 -x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{mathcal{C}_r} ( y - x )^n , mathrm{d}x. $$
Notice that if $0 < r < s$, then $mathcal{C}_s$ lies above $mathcal{C}_r$, and so, the curve $mathcal{C}_r - mathcal{C}_s$ bounds some region, which we denote by $mathcal{D}$, counter-clockwise:
$hspace{10em}$
Then by Green's theorem,
$$ I(r) - I(s)
= int_{partial mathcal{D}} ( y - x )^n , mathrm{d}x
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
But since the region $mathcal{D}$ is symmetric around $y = x$ and $n$ is even, interchanging the roles of $x$ and $y$ shows
$$ iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y
= iint_{mathcal{D}} n (x - y)^{n-1} , mathrm{d}xmathrm{d}y
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
Therefore $I(r) = I(s)$ for any $ r < s$, and in particular, letting $s to infty$ gives
$$ I(r) = int _{0}^{1} (1 - x)^n , mathrm{d}x = frac{1}{n+1}. $$
$endgroup$
We present 3 different solutions.
Solution 1 - slick substitution. We prove a more general statement:
Proposition. Let $R in (0, infty]$ and let $varphi : [0, R] to [0, R]$ satisfy the following conditions:
$varphi$ is continuous on $[0, R]$;
$varphi(0) = R$ and $varphi(R) = 0$;
$varphi$ is bijective and $varphi^{-1} = varphi$.
Then for any integrable function $f$ on $[0, R]$,
$$ int_{0}^{R} f(|x-varphi(x)|) , mathrm{d}x = int_{0}^{R} f(x) , mathrm{d}x. $$
Proof. In case $varphi$ is also continuously differentiable on $(0, R)$, by the substitution $y = varphi(x)$, or equivalently, $x = varphi(y)$,
$$ I
:= int_{0}^{R} f( |x - varphi(x)| ) , mathrm{d}x
= -int_{0}^{R} f( |varphi(y) - y| ) varphi'(y) , mathrm{d}y. $$
Summing two integrals,
begin{align*}
2I
&= int_{0}^{R} f( |x - varphi(x)| ) (1 - varphi'(x)) , mathrm{d}x \
&= int_{-R}^{R} f( |u| ) , mathrm{d}u = 2int_{0}^{R} f(u) , mathrm{d}u, tag{$u = x - varphi(x)$}
end{align*}
proving the claim when $varphi$ is continuously differentiable. This proof can be easily adapted to general $varphi$ by using Stieltjes integral. ■
Now plug $varphi(x) = (1-x^r)^{1/r}$ with $R = 1$ and $f(x) = x^n$ for positive even integer $n$. Then
$$ int_{0}^{1} left( (1-x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{0}^{1} left| x - (1-x^r)^{1/r} right|^n , mathrm{d}x
= int_{0}^{1} x^n , mathrm{d}x
= frac{1}{n+1}. $$
Solution 2 - using beta function. Here is an anternative solution. Write $p = 1/r$. Then using the substitution $x = u^p$,
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= int_{0}^{1} left( (1 - u)^{p} - u^p right)^{n} pu^{p-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p int_{0}^{1} (1-u)^{p(n-k)} u^{p(k+1)-1} , mathrm{d}u \
&= sum_{k=0}^{n} (-1)^k binom{n}{k} p cdot frac{(p(n-k))!(p(k+1)-1)!}{(p(n+1))!}
end{align*}
Here, $s! = Gamma(s+1)$. Now define $a_k = (pk)!/k!$. Then the above sum simplifies to
begin{align*}
int_{0}^{1} left( (1 - x^r)^{1/r} - x right)^n , mathrm{d}x
&= frac{1}{(n+1)a_{n+1}} sum_{k=0}^{n} (-1)^k a_{n-k}a_{k+1} \
&= frac{1}{(n+1)a_{n+1}} left( a_0 a_{n+1} + sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} right).
end{align*}
So it suffices to show that $sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1} = 0$. But by the substitution $l = n-1-k$, we have
$$ sum_{k=0}^{n-1} (-1)^k a_{n-k}a_{k+1}
= - sum_{l=0}^{n-1} (-1)^l a_{l+1}a_{n-l}. $$
(Here the parity of $n$ is used.) So the sum equals its negation, hence is zero as required.
Solution 3 - using multivariate calculus. Let $mathcal{C}_r$ denote the curve defined by $x^r + y^r = 1$ in the first quadrant, oriented to the right. Then
$$ I(r) := int_{0}^{1} left( (1 -x^r)^{1/r} - x right)^n , mathrm{d}x
= int_{mathcal{C}_r} ( y - x )^n , mathrm{d}x. $$
Notice that if $0 < r < s$, then $mathcal{C}_s$ lies above $mathcal{C}_r$, and so, the curve $mathcal{C}_r - mathcal{C}_s$ bounds some region, which we denote by $mathcal{D}$, counter-clockwise:
$hspace{10em}$
Then by Green's theorem,
$$ I(r) - I(s)
= int_{partial mathcal{D}} ( y - x )^n , mathrm{d}x
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
But since the region $mathcal{D}$ is symmetric around $y = x$ and $n$ is even, interchanging the roles of $x$ and $y$ shows
$$ iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y
= iint_{mathcal{D}} n (x - y)^{n-1} , mathrm{d}xmathrm{d}y
= - iint_{mathcal{D}} n (y - x)^{n-1} , mathrm{d}xmathrm{d}y. $$
Therefore $I(r) = I(s)$ for any $ r < s$, and in particular, letting $s to infty$ gives
$$ I(r) = int _{0}^{1} (1 - x)^n , mathrm{d}x = frac{1}{n+1}. $$
edited Jan 28 at 0:56
answered Jan 12 at 0:53
Sangchul LeeSangchul Lee
95.6k12171279
95.6k12171279
1
$begingroup$
Beautiful! This looks like Glasser's Master theorem little brother :D
$endgroup$
– Zacky
Jan 12 at 1:02
$begingroup$
Was it necessary to start with absolute value in the argument of function?
$endgroup$
– user
Jan 12 at 1:04
$begingroup$
@user, It is kind of necessary, in the sense that $$ int_{0}^{1} gleft(x-(1-x^r)^{1/r}right) , mathrm{d}x = int_{0}^{1} g(u) , mathrm{d}u $$ may fail if $g$ is not an even function on $[-1, 1]$.
$endgroup$
– Sangchul Lee
Jan 12 at 1:06
1
$begingroup$
@Zacky, Both Glasser's master theorem and my answer deals with specific examples of measure-preserving transformations, hence the conclusion should look similar. Of course, the beauty of Glasser's result is that its proof is very elementary. (The result itself was known much prior to his paper.)
$endgroup$
– Sangchul Lee
Jan 12 at 1:12
$begingroup$
@SangchulLee: You mentioned to use the fact that $|x - varphi(x)|^n = (varphi(x) - x)^n$. Is there a name for this fact. I don't quite understand how you get there.
$endgroup$
– Larry
Jan 27 at 23:17
|
show 3 more comments
1
$begingroup$
Beautiful! This looks like Glasser's Master theorem little brother :D
$endgroup$
– Zacky
Jan 12 at 1:02
$begingroup$
Was it necessary to start with absolute value in the argument of function?
$endgroup$
– user
Jan 12 at 1:04
$begingroup$
@user, It is kind of necessary, in the sense that $$ int_{0}^{1} gleft(x-(1-x^r)^{1/r}right) , mathrm{d}x = int_{0}^{1} g(u) , mathrm{d}u $$ may fail if $g$ is not an even function on $[-1, 1]$.
$endgroup$
– Sangchul Lee
Jan 12 at 1:06
1
$begingroup$
@Zacky, Both Glasser's master theorem and my answer deals with specific examples of measure-preserving transformations, hence the conclusion should look similar. Of course, the beauty of Glasser's result is that its proof is very elementary. (The result itself was known much prior to his paper.)
$endgroup$
– Sangchul Lee
Jan 12 at 1:12
$begingroup$
@SangchulLee: You mentioned to use the fact that $|x - varphi(x)|^n = (varphi(x) - x)^n$. Is there a name for this fact. I don't quite understand how you get there.
$endgroup$
– Larry
Jan 27 at 23:17
1
1
$begingroup$
Beautiful! This looks like Glasser's Master theorem little brother :D
$endgroup$
– Zacky
Jan 12 at 1:02
$begingroup$
Beautiful! This looks like Glasser's Master theorem little brother :D
$endgroup$
– Zacky
Jan 12 at 1:02
$begingroup$
Was it necessary to start with absolute value in the argument of function?
$endgroup$
– user
Jan 12 at 1:04
$begingroup$
Was it necessary to start with absolute value in the argument of function?
$endgroup$
– user
Jan 12 at 1:04
$begingroup$
@user, It is kind of necessary, in the sense that $$ int_{0}^{1} gleft(x-(1-x^r)^{1/r}right) , mathrm{d}x = int_{0}^{1} g(u) , mathrm{d}u $$ may fail if $g$ is not an even function on $[-1, 1]$.
$endgroup$
– Sangchul Lee
Jan 12 at 1:06
$begingroup$
@user, It is kind of necessary, in the sense that $$ int_{0}^{1} gleft(x-(1-x^r)^{1/r}right) , mathrm{d}x = int_{0}^{1} g(u) , mathrm{d}u $$ may fail if $g$ is not an even function on $[-1, 1]$.
$endgroup$
– Sangchul Lee
Jan 12 at 1:06
1
1
$begingroup$
@Zacky, Both Glasser's master theorem and my answer deals with specific examples of measure-preserving transformations, hence the conclusion should look similar. Of course, the beauty of Glasser's result is that its proof is very elementary. (The result itself was known much prior to his paper.)
$endgroup$
– Sangchul Lee
Jan 12 at 1:12
$begingroup$
@Zacky, Both Glasser's master theorem and my answer deals with specific examples of measure-preserving transformations, hence the conclusion should look similar. Of course, the beauty of Glasser's result is that its proof is very elementary. (The result itself was known much prior to his paper.)
$endgroup$
– Sangchul Lee
Jan 12 at 1:12
$begingroup$
@SangchulLee: You mentioned to use the fact that $|x - varphi(x)|^n = (varphi(x) - x)^n$. Is there a name for this fact. I don't quite understand how you get there.
$endgroup$
– Larry
Jan 27 at 23:17
$begingroup$
@SangchulLee: You mentioned to use the fact that $|x - varphi(x)|^n = (varphi(x) - x)^n$. Is there a name for this fact. I don't quite understand how you get there.
$endgroup$
– Larry
Jan 27 at 23:17
|
show 3 more comments
$begingroup$
Here's your Beta integral
$$S=int_0^1x^{n-k}(1-x^r)^{k/r}dx$$
Setting $w=x^r$, we see that
$$S=frac1rint_0^1w^{frac{n+1-k-r}r}(1-w)^{k/r}dw$$
$$S=frac1rint_0^1w^{frac{n+1-k}r-1}(1-w)^{frac{k+r}r-1}dw$$
$$S=frac1rmathrm{B}bigg(frac{n+1-k}r,frac{k+r}rbigg)$$
So
$$I(r,n)=int_0^1[(1-x^r)^{1/r}-x]^ndx$$
$$I(r,n)=frac1rsum_{k=0}^{n}(-1)^{n-k}{nchoose k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(1+frac{n+1}r)}$$
$$I(r,n)=frac1{r}frac{Gamma(n+1)}{Gamma(1+frac{n+1}r)}sum_{k=0}^{n}(-1)^{n-k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(k+1)Gamma(n-k+1)}$$
Which is a closed form
$endgroup$
1
$begingroup$
Try to find an error in your derivation as $I(r,n)=frac{1}{n+1}$ for even $n$ and any $r$.
$endgroup$
– user
Jan 12 at 1:45
$begingroup$
@user Ah yes I forgot $n$ was even
$endgroup$
– clathratus
Jan 12 at 1:57
1
$begingroup$
Nice approach. Seems almost obvious after reading it, but I was stuck when I first saw it (+1)
$endgroup$
– DavidG
Jan 12 at 5:31
add a comment |
$begingroup$
Here's your Beta integral
$$S=int_0^1x^{n-k}(1-x^r)^{k/r}dx$$
Setting $w=x^r$, we see that
$$S=frac1rint_0^1w^{frac{n+1-k-r}r}(1-w)^{k/r}dw$$
$$S=frac1rint_0^1w^{frac{n+1-k}r-1}(1-w)^{frac{k+r}r-1}dw$$
$$S=frac1rmathrm{B}bigg(frac{n+1-k}r,frac{k+r}rbigg)$$
So
$$I(r,n)=int_0^1[(1-x^r)^{1/r}-x]^ndx$$
$$I(r,n)=frac1rsum_{k=0}^{n}(-1)^{n-k}{nchoose k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(1+frac{n+1}r)}$$
$$I(r,n)=frac1{r}frac{Gamma(n+1)}{Gamma(1+frac{n+1}r)}sum_{k=0}^{n}(-1)^{n-k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(k+1)Gamma(n-k+1)}$$
Which is a closed form
$endgroup$
1
$begingroup$
Try to find an error in your derivation as $I(r,n)=frac{1}{n+1}$ for even $n$ and any $r$.
$endgroup$
– user
Jan 12 at 1:45
$begingroup$
@user Ah yes I forgot $n$ was even
$endgroup$
– clathratus
Jan 12 at 1:57
1
$begingroup$
Nice approach. Seems almost obvious after reading it, but I was stuck when I first saw it (+1)
$endgroup$
– DavidG
Jan 12 at 5:31
add a comment |
$begingroup$
Here's your Beta integral
$$S=int_0^1x^{n-k}(1-x^r)^{k/r}dx$$
Setting $w=x^r$, we see that
$$S=frac1rint_0^1w^{frac{n+1-k-r}r}(1-w)^{k/r}dw$$
$$S=frac1rint_0^1w^{frac{n+1-k}r-1}(1-w)^{frac{k+r}r-1}dw$$
$$S=frac1rmathrm{B}bigg(frac{n+1-k}r,frac{k+r}rbigg)$$
So
$$I(r,n)=int_0^1[(1-x^r)^{1/r}-x]^ndx$$
$$I(r,n)=frac1rsum_{k=0}^{n}(-1)^{n-k}{nchoose k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(1+frac{n+1}r)}$$
$$I(r,n)=frac1{r}frac{Gamma(n+1)}{Gamma(1+frac{n+1}r)}sum_{k=0}^{n}(-1)^{n-k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(k+1)Gamma(n-k+1)}$$
Which is a closed form
$endgroup$
Here's your Beta integral
$$S=int_0^1x^{n-k}(1-x^r)^{k/r}dx$$
Setting $w=x^r$, we see that
$$S=frac1rint_0^1w^{frac{n+1-k-r}r}(1-w)^{k/r}dw$$
$$S=frac1rint_0^1w^{frac{n+1-k}r-1}(1-w)^{frac{k+r}r-1}dw$$
$$S=frac1rmathrm{B}bigg(frac{n+1-k}r,frac{k+r}rbigg)$$
So
$$I(r,n)=int_0^1[(1-x^r)^{1/r}-x]^ndx$$
$$I(r,n)=frac1rsum_{k=0}^{n}(-1)^{n-k}{nchoose k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(1+frac{n+1}r)}$$
$$I(r,n)=frac1{r}frac{Gamma(n+1)}{Gamma(1+frac{n+1}r)}sum_{k=0}^{n}(-1)^{n-k}frac{Gamma(frac{n+1-k}r)Gamma(frac{k+r}r)}{Gamma(k+1)Gamma(n-k+1)}$$
Which is a closed form
edited Jan 12 at 1:56
answered Jan 12 at 0:59
clathratusclathratus
4,8901338
4,8901338
1
$begingroup$
Try to find an error in your derivation as $I(r,n)=frac{1}{n+1}$ for even $n$ and any $r$.
$endgroup$
– user
Jan 12 at 1:45
$begingroup$
@user Ah yes I forgot $n$ was even
$endgroup$
– clathratus
Jan 12 at 1:57
1
$begingroup$
Nice approach. Seems almost obvious after reading it, but I was stuck when I first saw it (+1)
$endgroup$
– DavidG
Jan 12 at 5:31
add a comment |
1
$begingroup$
Try to find an error in your derivation as $I(r,n)=frac{1}{n+1}$ for even $n$ and any $r$.
$endgroup$
– user
Jan 12 at 1:45
$begingroup$
@user Ah yes I forgot $n$ was even
$endgroup$
– clathratus
Jan 12 at 1:57
1
$begingroup$
Nice approach. Seems almost obvious after reading it, but I was stuck when I first saw it (+1)
$endgroup$
– DavidG
Jan 12 at 5:31
1
1
$begingroup$
Try to find an error in your derivation as $I(r,n)=frac{1}{n+1}$ for even $n$ and any $r$.
$endgroup$
– user
Jan 12 at 1:45
$begingroup$
Try to find an error in your derivation as $I(r,n)=frac{1}{n+1}$ for even $n$ and any $r$.
$endgroup$
– user
Jan 12 at 1:45
$begingroup$
@user Ah yes I forgot $n$ was even
$endgroup$
– clathratus
Jan 12 at 1:57
$begingroup$
@user Ah yes I forgot $n$ was even
$endgroup$
– clathratus
Jan 12 at 1:57
1
1
$begingroup$
Nice approach. Seems almost obvious after reading it, but I was stuck when I first saw it (+1)
$endgroup$
– DavidG
Jan 12 at 5:31
$begingroup$
Nice approach. Seems almost obvious after reading it, but I was stuck when I first saw it (+1)
$endgroup$
– DavidG
Jan 12 at 5:31
add a comment |
$begingroup$
Here's a proof with Hypergeometirc function.
We have
$$
underset{j=1}{overset{2 n+1}{sum }}
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=left(left(1-x^rright)^{1/r}-xright)^{2 n}
$$
by binomial expansion.
It is easy to verify that
$$
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=
frac{mathrm d}{mathrm d x}left(
frac{1}{2 n+1}
(-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright)
right)
$$
Therefore, we have
$$
int((1-x^r)^{1/r}-x)^{2 n} mathrm dx
=
sum _{j=1}^{2 n+1} frac{1}{2 n+1} (-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright).
$$
When $j=2n+1$, the summand in the right hand equals $frac{x^{2 n+1}}{2 n+1}$. This is the term which gives us $frac 1 {2n+1}$.
$endgroup$
add a comment |
$begingroup$
Here's a proof with Hypergeometirc function.
We have
$$
underset{j=1}{overset{2 n+1}{sum }}
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=left(left(1-x^rright)^{1/r}-xright)^{2 n}
$$
by binomial expansion.
It is easy to verify that
$$
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=
frac{mathrm d}{mathrm d x}left(
frac{1}{2 n+1}
(-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright)
right)
$$
Therefore, we have
$$
int((1-x^r)^{1/r}-x)^{2 n} mathrm dx
=
sum _{j=1}^{2 n+1} frac{1}{2 n+1} (-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright).
$$
When $j=2n+1$, the summand in the right hand equals $frac{x^{2 n+1}}{2 n+1}$. This is the term which gives us $frac 1 {2n+1}$.
$endgroup$
add a comment |
$begingroup$
Here's a proof with Hypergeometirc function.
We have
$$
underset{j=1}{overset{2 n+1}{sum }}
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=left(left(1-x^rright)^{1/r}-xright)^{2 n}
$$
by binomial expansion.
It is easy to verify that
$$
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=
frac{mathrm d}{mathrm d x}left(
frac{1}{2 n+1}
(-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright)
right)
$$
Therefore, we have
$$
int((1-x^r)^{1/r}-x)^{2 n} mathrm dx
=
sum _{j=1}^{2 n+1} frac{1}{2 n+1} (-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright).
$$
When $j=2n+1$, the summand in the right hand equals $frac{x^{2 n+1}}{2 n+1}$. This is the term which gives us $frac 1 {2n+1}$.
$endgroup$
Here's a proof with Hypergeometirc function.
We have
$$
underset{j=1}{overset{2 n+1}{sum }}
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=left(left(1-x^rright)^{1/r}-xright)^{2 n}
$$
by binomial expansion.
It is easy to verify that
$$
left(
begin{array}{c}
2 n \
j-1 \
end{array}
right)
(-x)^{j-1}
left(left(1-x^rright)^{1/r}right)^{-j+2 n+1}
=
frac{mathrm d}{mathrm d x}left(
frac{1}{2 n+1}
(-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright)
right)
$$
Therefore, we have
$$
int((1-x^r)^{1/r}-x)^{2 n} mathrm dx
=
sum _{j=1}^{2 n+1} frac{1}{2 n+1} (-1)^{j+1} x^j binom{2 n+1}{j} , _2F_1left(frac{j}{r},-frac{-j+2 n+1}{r};frac{j}{r}+1;x^rright).
$$
When $j=2n+1$, the summand in the right hand equals $frac{x^{2 n+1}}{2 n+1}$. This is the term which gives us $frac 1 {2n+1}$.
answered Jan 12 at 11:03
ablmfablmf
2,56842452
2,56842452
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.int_{0}^{1}bracks{pars{1 - x^{r}}^{1/r} - x}^{2k},dd x,rightvert_{{large r > 0} atop
{large k in mathbb{N}_{geq 0}}}}
\[5mm] stackrel{x^{large r} mapsto x}{=},,,&
int_{0}^{1}bracks{pars{1 - x}^{1/r} - x^{1/r}}^{2k},{1 over r},
x^{1/r - 1},dd x
\[5mm]
,,,stackrel{x mapsto x + 1/2}{=},,,&
{1 over r}int_{-1/2}^{1/2}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k},
pars{{1 over 2} + x}^{1/r - 1},dd x
\[5mm] = &
{1 over r}int_{0}^{1/2}!!bracks{!!pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x!}^{1/r}}^{2k}!
bracks{!pars{{1 over 2} + x}^{1/r - 1} +
pars{{1 over 2} - x}^{1/r - 1}!}!dd x
\[5mm] = &
-int_{0}^{1/2}{1 over 2k + 1},partiald{}{x}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1},dd x
\[5mm] = &
underbrace{braces{-bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1}}_{x = 0}^{x = 1/2}}
_{ds{= 1 - 0 = 1}},,,{1 over 2k + 1} =
bbx{1 over 2k + 1}
end{align}
$endgroup$
$begingroup$
Nice solution, (+1).
$endgroup$
– Larry
Mar 5 at 13:19
$begingroup$
Thanks @Larry .
$endgroup$
– Felix Marin
Mar 5 at 15:23
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.int_{0}^{1}bracks{pars{1 - x^{r}}^{1/r} - x}^{2k},dd x,rightvert_{{large r > 0} atop
{large k in mathbb{N}_{geq 0}}}}
\[5mm] stackrel{x^{large r} mapsto x}{=},,,&
int_{0}^{1}bracks{pars{1 - x}^{1/r} - x^{1/r}}^{2k},{1 over r},
x^{1/r - 1},dd x
\[5mm]
,,,stackrel{x mapsto x + 1/2}{=},,,&
{1 over r}int_{-1/2}^{1/2}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k},
pars{{1 over 2} + x}^{1/r - 1},dd x
\[5mm] = &
{1 over r}int_{0}^{1/2}!!bracks{!!pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x!}^{1/r}}^{2k}!
bracks{!pars{{1 over 2} + x}^{1/r - 1} +
pars{{1 over 2} - x}^{1/r - 1}!}!dd x
\[5mm] = &
-int_{0}^{1/2}{1 over 2k + 1},partiald{}{x}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1},dd x
\[5mm] = &
underbrace{braces{-bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1}}_{x = 0}^{x = 1/2}}
_{ds{= 1 - 0 = 1}},,,{1 over 2k + 1} =
bbx{1 over 2k + 1}
end{align}
$endgroup$
$begingroup$
Nice solution, (+1).
$endgroup$
– Larry
Mar 5 at 13:19
$begingroup$
Thanks @Larry .
$endgroup$
– Felix Marin
Mar 5 at 15:23
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.int_{0}^{1}bracks{pars{1 - x^{r}}^{1/r} - x}^{2k},dd x,rightvert_{{large r > 0} atop
{large k in mathbb{N}_{geq 0}}}}
\[5mm] stackrel{x^{large r} mapsto x}{=},,,&
int_{0}^{1}bracks{pars{1 - x}^{1/r} - x^{1/r}}^{2k},{1 over r},
x^{1/r - 1},dd x
\[5mm]
,,,stackrel{x mapsto x + 1/2}{=},,,&
{1 over r}int_{-1/2}^{1/2}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k},
pars{{1 over 2} + x}^{1/r - 1},dd x
\[5mm] = &
{1 over r}int_{0}^{1/2}!!bracks{!!pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x!}^{1/r}}^{2k}!
bracks{!pars{{1 over 2} + x}^{1/r - 1} +
pars{{1 over 2} - x}^{1/r - 1}!}!dd x
\[5mm] = &
-int_{0}^{1/2}{1 over 2k + 1},partiald{}{x}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1},dd x
\[5mm] = &
underbrace{braces{-bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1}}_{x = 0}^{x = 1/2}}
_{ds{= 1 - 0 = 1}},,,{1 over 2k + 1} =
bbx{1 over 2k + 1}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.int_{0}^{1}bracks{pars{1 - x^{r}}^{1/r} - x}^{2k},dd x,rightvert_{{large r > 0} atop
{large k in mathbb{N}_{geq 0}}}}
\[5mm] stackrel{x^{large r} mapsto x}{=},,,&
int_{0}^{1}bracks{pars{1 - x}^{1/r} - x^{1/r}}^{2k},{1 over r},
x^{1/r - 1},dd x
\[5mm]
,,,stackrel{x mapsto x + 1/2}{=},,,&
{1 over r}int_{-1/2}^{1/2}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k},
pars{{1 over 2} + x}^{1/r - 1},dd x
\[5mm] = &
{1 over r}int_{0}^{1/2}!!bracks{!!pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x!}^{1/r}}^{2k}!
bracks{!pars{{1 over 2} + x}^{1/r - 1} +
pars{{1 over 2} - x}^{1/r - 1}!}!dd x
\[5mm] = &
-int_{0}^{1/2}{1 over 2k + 1},partiald{}{x}bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1},dd x
\[5mm] = &
underbrace{braces{-bracks{pars{{1 over 2} - x}^{1/r} - pars{{1 over 2} + x}^{1/r}}^{2k + 1}}_{x = 0}^{x = 1/2}}
_{ds{= 1 - 0 = 1}},,,{1 over 2k + 1} =
bbx{1 over 2k + 1}
end{align}
edited Mar 5 at 1:16
answered Mar 5 at 1:10
Felix MarinFelix Marin
68.4k7109144
68.4k7109144
$begingroup$
Nice solution, (+1).
$endgroup$
– Larry
Mar 5 at 13:19
$begingroup$
Thanks @Larry .
$endgroup$
– Felix Marin
Mar 5 at 15:23
add a comment |
$begingroup$
Nice solution, (+1).
$endgroup$
– Larry
Mar 5 at 13:19
$begingroup$
Thanks @Larry .
$endgroup$
– Felix Marin
Mar 5 at 15:23
$begingroup$
Nice solution, (+1).
$endgroup$
– Larry
Mar 5 at 13:19
$begingroup$
Nice solution, (+1).
$endgroup$
– Larry
Mar 5 at 13:19
$begingroup$
Thanks @Larry .
$endgroup$
– Felix Marin
Mar 5 at 15:23
$begingroup$
Thanks @Larry .
$endgroup$
– Felix Marin
Mar 5 at 15:23
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070440%2fways-to-show-that-int-011-xr1-r-xndx-frac1n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Perhaps the simpler integral (with $r=1$) can be used in an integration-by-parts approach: $frac{Gamma left(1+frac{1}{n}right)^2}{Gamma left(frac{n+2}{n}right)}-frac{1}{2}$
$endgroup$
– David G. Stork
Jan 11 at 23:45
$begingroup$
Note: switching between $n$ and $r$ between the header and the body is very confusing. Sticking with the header notation, and letting, $n=1$ you get the integral $int_0^1 (1-2x)^r,dx$ which is not always $frac 1{r+1}$. If $r=1$, say, you get $0$.
$endgroup$
– lulu
Jan 12 at 0:03
$begingroup$
And, sticking with the header notation and letting $n=2$, we see that $int_0^1 ((1-x^2)^{1/2}-x)^3,dx = frac {3pi}8 -1 approx .1781 neq frac 14$ . Or am I misreading something?
$endgroup$
– lulu
Jan 12 at 0:08
2
$begingroup$
I see, thank you for re-asking the question! It is a nice integral for sure.
$endgroup$
– Zacky
Jan 12 at 0:26
1
$begingroup$
@clathratus: Oops, $u$ should be $y$. I will edit it. Thanks for pointing that out.
$endgroup$
– Larry
Jan 12 at 0:51