Closed form for $sumlimits_{n=2}^{infty}frac1{n^3-1}$
$begingroup$
I am investigating (just for fun) the sum
$$S=sum_{n=2}^{infty}frac1{n^3-1}$$
Wolfram Alpha gives me the 'value'
$$S=-frac13sum_{{omega,:,omega^3+6omega^2+12omega+7=0}}frac{psi_{0}(-omega)}{omega^2+4omega+4}$$
Where $psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.
My attempts: recall that $$x^3-1=prod_{k=1}^{3}(x-alpha_k)$$
Where $alpha_k=expfrac{2ipi(k-1)}{3}$. Hence
$$S=sum_{ngeq2}prod_{k=1}^3frac1{n-alpha_k}$$
I have shown in other posts that given some non-zero sequence ${a_k:k=1,2,..,m}$ where $jneq kiff a_jneq a_k$ then
$$prod_{k=1}^{m}frac1{x-a_k}=sum_{k=1}^{m}frac1{x-a_k}prod_{j=1\jneq k}^{m}frac1{a_k-a_j}$$
So
$$S=sum_{ngeq2}bigg[sum_{k=1}^{3}frac1{n-alpha_k}prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}bigg]$$
Setting $b(k)=prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}$,
$$S=sum_{ngeq2}sum_{k=1}^3frac{b(k)}{n-alpha_k}$$
$$S=b(1)sum_{ngeq2}frac1{n-alpha_1}+b(2)sum_{ngeq2}frac1{n-alpha_2}+b(3)sum_{ngeq2}frac1{n-alpha_3}$$
Then focusing on
$$begin{align}
S_k=&sum_{ngeq2}frac1{n-alpha_k}\
=&sum_{ngeq2}int_0^1x^{n-1}frac{mathrm dx}{x^{alpha_k}}\
=&int_0^1frac{1}{x^{alpha_k-1}}sum_{ngeq0}x^{n}mathrm dx\
=&int_0^1x^{1-alpha_k}(1-x)^{-1}mathrm dx\
=&text{???}
end{align}$$
for this final integral I considered using the beta function but that wouldn't work because $Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.
As you can see, I'm stuck. Could I have a little help?
Thanks
Edit:
It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=sum_{ngeq2}frac1{n^{2k+1}-1},qquad kinBbb N$$
Which seem to be in the form
$$S(k)=-frac1{1+2k}sum_{{omega,:,R_k(omega)=0}}frac{psi_0(-omega)}{P_k(omega)}$$
Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.
sequences-and-series analytic-number-theory closed-form
$endgroup$
add a comment |
$begingroup$
I am investigating (just for fun) the sum
$$S=sum_{n=2}^{infty}frac1{n^3-1}$$
Wolfram Alpha gives me the 'value'
$$S=-frac13sum_{{omega,:,omega^3+6omega^2+12omega+7=0}}frac{psi_{0}(-omega)}{omega^2+4omega+4}$$
Where $psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.
My attempts: recall that $$x^3-1=prod_{k=1}^{3}(x-alpha_k)$$
Where $alpha_k=expfrac{2ipi(k-1)}{3}$. Hence
$$S=sum_{ngeq2}prod_{k=1}^3frac1{n-alpha_k}$$
I have shown in other posts that given some non-zero sequence ${a_k:k=1,2,..,m}$ where $jneq kiff a_jneq a_k$ then
$$prod_{k=1}^{m}frac1{x-a_k}=sum_{k=1}^{m}frac1{x-a_k}prod_{j=1\jneq k}^{m}frac1{a_k-a_j}$$
So
$$S=sum_{ngeq2}bigg[sum_{k=1}^{3}frac1{n-alpha_k}prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}bigg]$$
Setting $b(k)=prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}$,
$$S=sum_{ngeq2}sum_{k=1}^3frac{b(k)}{n-alpha_k}$$
$$S=b(1)sum_{ngeq2}frac1{n-alpha_1}+b(2)sum_{ngeq2}frac1{n-alpha_2}+b(3)sum_{ngeq2}frac1{n-alpha_3}$$
Then focusing on
$$begin{align}
S_k=&sum_{ngeq2}frac1{n-alpha_k}\
=&sum_{ngeq2}int_0^1x^{n-1}frac{mathrm dx}{x^{alpha_k}}\
=&int_0^1frac{1}{x^{alpha_k-1}}sum_{ngeq0}x^{n}mathrm dx\
=&int_0^1x^{1-alpha_k}(1-x)^{-1}mathrm dx\
=&text{???}
end{align}$$
for this final integral I considered using the beta function but that wouldn't work because $Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.
As you can see, I'm stuck. Could I have a little help?
Thanks
Edit:
It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=sum_{ngeq2}frac1{n^{2k+1}-1},qquad kinBbb N$$
Which seem to be in the form
$$S(k)=-frac1{1+2k}sum_{{omega,:,R_k(omega)=0}}frac{psi_0(-omega)}{P_k(omega)}$$
Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.
sequences-and-series analytic-number-theory closed-form
$endgroup$
1
$begingroup$
I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
$endgroup$
– user
Jan 11 at 23:24
$begingroup$
@user see the edit
$endgroup$
– clathratus
Jan 11 at 23:28
2
$begingroup$
Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
$endgroup$
– Simply Beautiful Art
Jan 12 at 0:50
add a comment |
$begingroup$
I am investigating (just for fun) the sum
$$S=sum_{n=2}^{infty}frac1{n^3-1}$$
Wolfram Alpha gives me the 'value'
$$S=-frac13sum_{{omega,:,omega^3+6omega^2+12omega+7=0}}frac{psi_{0}(-omega)}{omega^2+4omega+4}$$
Where $psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.
My attempts: recall that $$x^3-1=prod_{k=1}^{3}(x-alpha_k)$$
Where $alpha_k=expfrac{2ipi(k-1)}{3}$. Hence
$$S=sum_{ngeq2}prod_{k=1}^3frac1{n-alpha_k}$$
I have shown in other posts that given some non-zero sequence ${a_k:k=1,2,..,m}$ where $jneq kiff a_jneq a_k$ then
$$prod_{k=1}^{m}frac1{x-a_k}=sum_{k=1}^{m}frac1{x-a_k}prod_{j=1\jneq k}^{m}frac1{a_k-a_j}$$
So
$$S=sum_{ngeq2}bigg[sum_{k=1}^{3}frac1{n-alpha_k}prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}bigg]$$
Setting $b(k)=prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}$,
$$S=sum_{ngeq2}sum_{k=1}^3frac{b(k)}{n-alpha_k}$$
$$S=b(1)sum_{ngeq2}frac1{n-alpha_1}+b(2)sum_{ngeq2}frac1{n-alpha_2}+b(3)sum_{ngeq2}frac1{n-alpha_3}$$
Then focusing on
$$begin{align}
S_k=&sum_{ngeq2}frac1{n-alpha_k}\
=&sum_{ngeq2}int_0^1x^{n-1}frac{mathrm dx}{x^{alpha_k}}\
=&int_0^1frac{1}{x^{alpha_k-1}}sum_{ngeq0}x^{n}mathrm dx\
=&int_0^1x^{1-alpha_k}(1-x)^{-1}mathrm dx\
=&text{???}
end{align}$$
for this final integral I considered using the beta function but that wouldn't work because $Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.
As you can see, I'm stuck. Could I have a little help?
Thanks
Edit:
It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=sum_{ngeq2}frac1{n^{2k+1}-1},qquad kinBbb N$$
Which seem to be in the form
$$S(k)=-frac1{1+2k}sum_{{omega,:,R_k(omega)=0}}frac{psi_0(-omega)}{P_k(omega)}$$
Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.
sequences-and-series analytic-number-theory closed-form
$endgroup$
I am investigating (just for fun) the sum
$$S=sum_{n=2}^{infty}frac1{n^3-1}$$
Wolfram Alpha gives me the 'value'
$$S=-frac13sum_{{omega,:,omega^3+6omega^2+12omega+7=0}}frac{psi_{0}(-omega)}{omega^2+4omega+4}$$
Where $psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.
My attempts: recall that $$x^3-1=prod_{k=1}^{3}(x-alpha_k)$$
Where $alpha_k=expfrac{2ipi(k-1)}{3}$. Hence
$$S=sum_{ngeq2}prod_{k=1}^3frac1{n-alpha_k}$$
I have shown in other posts that given some non-zero sequence ${a_k:k=1,2,..,m}$ where $jneq kiff a_jneq a_k$ then
$$prod_{k=1}^{m}frac1{x-a_k}=sum_{k=1}^{m}frac1{x-a_k}prod_{j=1\jneq k}^{m}frac1{a_k-a_j}$$
So
$$S=sum_{ngeq2}bigg[sum_{k=1}^{3}frac1{n-alpha_k}prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}bigg]$$
Setting $b(k)=prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}$,
$$S=sum_{ngeq2}sum_{k=1}^3frac{b(k)}{n-alpha_k}$$
$$S=b(1)sum_{ngeq2}frac1{n-alpha_1}+b(2)sum_{ngeq2}frac1{n-alpha_2}+b(3)sum_{ngeq2}frac1{n-alpha_3}$$
Then focusing on
$$begin{align}
S_k=&sum_{ngeq2}frac1{n-alpha_k}\
=&sum_{ngeq2}int_0^1x^{n-1}frac{mathrm dx}{x^{alpha_k}}\
=&int_0^1frac{1}{x^{alpha_k-1}}sum_{ngeq0}x^{n}mathrm dx\
=&int_0^1x^{1-alpha_k}(1-x)^{-1}mathrm dx\
=&text{???}
end{align}$$
for this final integral I considered using the beta function but that wouldn't work because $Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.
As you can see, I'm stuck. Could I have a little help?
Thanks
Edit:
It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=sum_{ngeq2}frac1{n^{2k+1}-1},qquad kinBbb N$$
Which seem to be in the form
$$S(k)=-frac1{1+2k}sum_{{omega,:,R_k(omega)=0}}frac{psi_0(-omega)}{P_k(omega)}$$
Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.
sequences-and-series analytic-number-theory closed-form
sequences-and-series analytic-number-theory closed-form
edited Jan 12 at 0:46
clathratus
asked Jan 11 at 22:58
clathratusclathratus
4,8871338
4,8871338
1
$begingroup$
I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
$endgroup$
– user
Jan 11 at 23:24
$begingroup$
@user see the edit
$endgroup$
– clathratus
Jan 11 at 23:28
2
$begingroup$
Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
$endgroup$
– Simply Beautiful Art
Jan 12 at 0:50
add a comment |
1
$begingroup$
I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
$endgroup$
– user
Jan 11 at 23:24
$begingroup$
@user see the edit
$endgroup$
– clathratus
Jan 11 at 23:28
2
$begingroup$
Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
$endgroup$
– Simply Beautiful Art
Jan 12 at 0:50
1
1
$begingroup$
I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
$endgroup$
– user
Jan 11 at 23:24
$begingroup$
I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
$endgroup$
– user
Jan 11 at 23:24
$begingroup$
@user see the edit
$endgroup$
– clathratus
Jan 11 at 23:28
$begingroup$
@user see the edit
$endgroup$
– clathratus
Jan 11 at 23:28
2
2
$begingroup$
Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
$endgroup$
– Simply Beautiful Art
Jan 12 at 0:50
$begingroup$
Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
$endgroup$
– Simply Beautiful Art
Jan 12 at 0:50
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Partial fraction decomposition tells us that
$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$
and by the property that
$$psi(z+1)=psi(z)+frac{1}{z}$$
we see that
$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$
Then we may sum both sides from 2 to infinity:
$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$
where the second equality is because $psi(h)=log(h)+O(1/h)$.
Arriving at the WolframAlpha result:
Plug in $k=3$, and thus
$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$
which is what we wanted.
$endgroup$
1
$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24
$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20
1
$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26
add a comment |
$begingroup$
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.
$endgroup$
$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070418%2fclosed-form-for-sum-limits-n-2-infty-frac1n3-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Partial fraction decomposition tells us that
$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$
and by the property that
$$psi(z+1)=psi(z)+frac{1}{z}$$
we see that
$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$
Then we may sum both sides from 2 to infinity:
$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$
where the second equality is because $psi(h)=log(h)+O(1/h)$.
Arriving at the WolframAlpha result:
Plug in $k=3$, and thus
$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$
which is what we wanted.
$endgroup$
1
$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24
$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20
1
$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26
add a comment |
$begingroup$
Partial fraction decomposition tells us that
$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$
and by the property that
$$psi(z+1)=psi(z)+frac{1}{z}$$
we see that
$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$
Then we may sum both sides from 2 to infinity:
$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$
where the second equality is because $psi(h)=log(h)+O(1/h)$.
Arriving at the WolframAlpha result:
Plug in $k=3$, and thus
$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$
which is what we wanted.
$endgroup$
1
$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24
$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20
1
$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26
add a comment |
$begingroup$
Partial fraction decomposition tells us that
$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$
and by the property that
$$psi(z+1)=psi(z)+frac{1}{z}$$
we see that
$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$
Then we may sum both sides from 2 to infinity:
$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$
where the second equality is because $psi(h)=log(h)+O(1/h)$.
Arriving at the WolframAlpha result:
Plug in $k=3$, and thus
$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$
which is what we wanted.
$endgroup$
Partial fraction decomposition tells us that
$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$
and by the property that
$$psi(z+1)=psi(z)+frac{1}{z}$$
we see that
$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$
Then we may sum both sides from 2 to infinity:
$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$
where the second equality is because $psi(h)=log(h)+O(1/h)$.
Arriving at the WolframAlpha result:
Plug in $k=3$, and thus
$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$
which is what we wanted.
edited Jan 12 at 3:11
answered Jan 12 at 0:27
Edward H.Edward H.
1739
1739
1
$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24
$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20
1
$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26
add a comment |
1
$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24
$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20
1
$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26
1
1
$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24
$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24
$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20
$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20
1
1
$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26
$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26
add a comment |
$begingroup$
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.
$endgroup$
$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27
add a comment |
$begingroup$
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.
$endgroup$
$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27
add a comment |
$begingroup$
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.
$endgroup$
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.
answered Jan 11 at 23:53
Jack D'AurizioJack D'Aurizio
291k33284667
291k33284667
$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27
add a comment |
$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27
$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27
$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070418%2fclosed-form-for-sum-limits-n-2-infty-frac1n3-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
$endgroup$
– user
Jan 11 at 23:24
$begingroup$
@user see the edit
$endgroup$
– clathratus
Jan 11 at 23:28
2
$begingroup$
Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
$endgroup$
– Simply Beautiful Art
Jan 12 at 0:50