Closed form for $sumlimits_{n=2}^{infty}frac1{n^3-1}$












4












$begingroup$


I am investigating (just for fun) the sum
$$S=sum_{n=2}^{infty}frac1{n^3-1}$$
Wolfram Alpha gives me the 'value'
$$S=-frac13sum_{{omega,:,omega^3+6omega^2+12omega+7=0}}frac{psi_{0}(-omega)}{omega^2+4omega+4}$$
Where $psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.



My attempts: recall that $$x^3-1=prod_{k=1}^{3}(x-alpha_k)$$
Where $alpha_k=expfrac{2ipi(k-1)}{3}$. Hence
$$S=sum_{ngeq2}prod_{k=1}^3frac1{n-alpha_k}$$
I have shown in other posts that given some non-zero sequence ${a_k:k=1,2,..,m}$ where $jneq kiff a_jneq a_k$ then
$$prod_{k=1}^{m}frac1{x-a_k}=sum_{k=1}^{m}frac1{x-a_k}prod_{j=1\jneq k}^{m}frac1{a_k-a_j}$$
So
$$S=sum_{ngeq2}bigg[sum_{k=1}^{3}frac1{n-alpha_k}prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}bigg]$$
Setting $b(k)=prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}$,
$$S=sum_{ngeq2}sum_{k=1}^3frac{b(k)}{n-alpha_k}$$
$$S=b(1)sum_{ngeq2}frac1{n-alpha_1}+b(2)sum_{ngeq2}frac1{n-alpha_2}+b(3)sum_{ngeq2}frac1{n-alpha_3}$$
Then focusing on
$$begin{align}
S_k=&sum_{ngeq2}frac1{n-alpha_k}\
=&sum_{ngeq2}int_0^1x^{n-1}frac{mathrm dx}{x^{alpha_k}}\
=&int_0^1frac{1}{x^{alpha_k-1}}sum_{ngeq0}x^{n}mathrm dx\
=&int_0^1x^{1-alpha_k}(1-x)^{-1}mathrm dx\
=&text{???}
end{align}$$

for this final integral I considered using the beta function but that wouldn't work because $Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.



As you can see, I'm stuck. Could I have a little help?



Thanks



Edit:



It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=sum_{ngeq2}frac1{n^{2k+1}-1},qquad kinBbb N$$
Which seem to be in the form
$$S(k)=-frac1{1+2k}sum_{{omega,:,R_k(omega)=0}}frac{psi_0(-omega)}{P_k(omega)}$$
Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
    $endgroup$
    – user
    Jan 11 at 23:24










  • $begingroup$
    @user see the edit
    $endgroup$
    – clathratus
    Jan 11 at 23:28






  • 2




    $begingroup$
    Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
    $endgroup$
    – Simply Beautiful Art
    Jan 12 at 0:50
















4












$begingroup$


I am investigating (just for fun) the sum
$$S=sum_{n=2}^{infty}frac1{n^3-1}$$
Wolfram Alpha gives me the 'value'
$$S=-frac13sum_{{omega,:,omega^3+6omega^2+12omega+7=0}}frac{psi_{0}(-omega)}{omega^2+4omega+4}$$
Where $psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.



My attempts: recall that $$x^3-1=prod_{k=1}^{3}(x-alpha_k)$$
Where $alpha_k=expfrac{2ipi(k-1)}{3}$. Hence
$$S=sum_{ngeq2}prod_{k=1}^3frac1{n-alpha_k}$$
I have shown in other posts that given some non-zero sequence ${a_k:k=1,2,..,m}$ where $jneq kiff a_jneq a_k$ then
$$prod_{k=1}^{m}frac1{x-a_k}=sum_{k=1}^{m}frac1{x-a_k}prod_{j=1\jneq k}^{m}frac1{a_k-a_j}$$
So
$$S=sum_{ngeq2}bigg[sum_{k=1}^{3}frac1{n-alpha_k}prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}bigg]$$
Setting $b(k)=prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}$,
$$S=sum_{ngeq2}sum_{k=1}^3frac{b(k)}{n-alpha_k}$$
$$S=b(1)sum_{ngeq2}frac1{n-alpha_1}+b(2)sum_{ngeq2}frac1{n-alpha_2}+b(3)sum_{ngeq2}frac1{n-alpha_3}$$
Then focusing on
$$begin{align}
S_k=&sum_{ngeq2}frac1{n-alpha_k}\
=&sum_{ngeq2}int_0^1x^{n-1}frac{mathrm dx}{x^{alpha_k}}\
=&int_0^1frac{1}{x^{alpha_k-1}}sum_{ngeq0}x^{n}mathrm dx\
=&int_0^1x^{1-alpha_k}(1-x)^{-1}mathrm dx\
=&text{???}
end{align}$$

for this final integral I considered using the beta function but that wouldn't work because $Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.



As you can see, I'm stuck. Could I have a little help?



Thanks



Edit:



It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=sum_{ngeq2}frac1{n^{2k+1}-1},qquad kinBbb N$$
Which seem to be in the form
$$S(k)=-frac1{1+2k}sum_{{omega,:,R_k(omega)=0}}frac{psi_0(-omega)}{P_k(omega)}$$
Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
    $endgroup$
    – user
    Jan 11 at 23:24










  • $begingroup$
    @user see the edit
    $endgroup$
    – clathratus
    Jan 11 at 23:28






  • 2




    $begingroup$
    Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
    $endgroup$
    – Simply Beautiful Art
    Jan 12 at 0:50














4












4








4


0



$begingroup$


I am investigating (just for fun) the sum
$$S=sum_{n=2}^{infty}frac1{n^3-1}$$
Wolfram Alpha gives me the 'value'
$$S=-frac13sum_{{omega,:,omega^3+6omega^2+12omega+7=0}}frac{psi_{0}(-omega)}{omega^2+4omega+4}$$
Where $psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.



My attempts: recall that $$x^3-1=prod_{k=1}^{3}(x-alpha_k)$$
Where $alpha_k=expfrac{2ipi(k-1)}{3}$. Hence
$$S=sum_{ngeq2}prod_{k=1}^3frac1{n-alpha_k}$$
I have shown in other posts that given some non-zero sequence ${a_k:k=1,2,..,m}$ where $jneq kiff a_jneq a_k$ then
$$prod_{k=1}^{m}frac1{x-a_k}=sum_{k=1}^{m}frac1{x-a_k}prod_{j=1\jneq k}^{m}frac1{a_k-a_j}$$
So
$$S=sum_{ngeq2}bigg[sum_{k=1}^{3}frac1{n-alpha_k}prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}bigg]$$
Setting $b(k)=prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}$,
$$S=sum_{ngeq2}sum_{k=1}^3frac{b(k)}{n-alpha_k}$$
$$S=b(1)sum_{ngeq2}frac1{n-alpha_1}+b(2)sum_{ngeq2}frac1{n-alpha_2}+b(3)sum_{ngeq2}frac1{n-alpha_3}$$
Then focusing on
$$begin{align}
S_k=&sum_{ngeq2}frac1{n-alpha_k}\
=&sum_{ngeq2}int_0^1x^{n-1}frac{mathrm dx}{x^{alpha_k}}\
=&int_0^1frac{1}{x^{alpha_k-1}}sum_{ngeq0}x^{n}mathrm dx\
=&int_0^1x^{1-alpha_k}(1-x)^{-1}mathrm dx\
=&text{???}
end{align}$$

for this final integral I considered using the beta function but that wouldn't work because $Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.



As you can see, I'm stuck. Could I have a little help?



Thanks



Edit:



It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=sum_{ngeq2}frac1{n^{2k+1}-1},qquad kinBbb N$$
Which seem to be in the form
$$S(k)=-frac1{1+2k}sum_{{omega,:,R_k(omega)=0}}frac{psi_0(-omega)}{P_k(omega)}$$
Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.










share|cite|improve this question











$endgroup$




I am investigating (just for fun) the sum
$$S=sum_{n=2}^{infty}frac1{n^3-1}$$
Wolfram Alpha gives me the 'value'
$$S=-frac13sum_{{omega,:,omega^3+6omega^2+12omega+7=0}}frac{psi_{0}(-omega)}{omega^2+4omega+4}$$
Where $psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.



My attempts: recall that $$x^3-1=prod_{k=1}^{3}(x-alpha_k)$$
Where $alpha_k=expfrac{2ipi(k-1)}{3}$. Hence
$$S=sum_{ngeq2}prod_{k=1}^3frac1{n-alpha_k}$$
I have shown in other posts that given some non-zero sequence ${a_k:k=1,2,..,m}$ where $jneq kiff a_jneq a_k$ then
$$prod_{k=1}^{m}frac1{x-a_k}=sum_{k=1}^{m}frac1{x-a_k}prod_{j=1\jneq k}^{m}frac1{a_k-a_j}$$
So
$$S=sum_{ngeq2}bigg[sum_{k=1}^{3}frac1{n-alpha_k}prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}bigg]$$
Setting $b(k)=prod_{j=1\jneq k}^{3}frac1{alpha_k-alpha_j}$,
$$S=sum_{ngeq2}sum_{k=1}^3frac{b(k)}{n-alpha_k}$$
$$S=b(1)sum_{ngeq2}frac1{n-alpha_1}+b(2)sum_{ngeq2}frac1{n-alpha_2}+b(3)sum_{ngeq2}frac1{n-alpha_3}$$
Then focusing on
$$begin{align}
S_k=&sum_{ngeq2}frac1{n-alpha_k}\
=&sum_{ngeq2}int_0^1x^{n-1}frac{mathrm dx}{x^{alpha_k}}\
=&int_0^1frac{1}{x^{alpha_k-1}}sum_{ngeq0}x^{n}mathrm dx\
=&int_0^1x^{1-alpha_k}(1-x)^{-1}mathrm dx\
=&text{???}
end{align}$$

for this final integral I considered using the beta function but that wouldn't work because $Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.



As you can see, I'm stuck. Could I have a little help?



Thanks



Edit:



It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=sum_{ngeq2}frac1{n^{2k+1}-1},qquad kinBbb N$$
Which seem to be in the form
$$S(k)=-frac1{1+2k}sum_{{omega,:,R_k(omega)=0}}frac{psi_0(-omega)}{P_k(omega)}$$
Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.







sequences-and-series analytic-number-theory closed-form






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 0:46







clathratus

















asked Jan 11 at 22:58









clathratusclathratus

4,8871338




4,8871338








  • 1




    $begingroup$
    I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
    $endgroup$
    – user
    Jan 11 at 23:24










  • $begingroup$
    @user see the edit
    $endgroup$
    – clathratus
    Jan 11 at 23:28






  • 2




    $begingroup$
    Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
    $endgroup$
    – Simply Beautiful Art
    Jan 12 at 0:50














  • 1




    $begingroup$
    I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
    $endgroup$
    – user
    Jan 11 at 23:24










  • $begingroup$
    @user see the edit
    $endgroup$
    – clathratus
    Jan 11 at 23:28






  • 2




    $begingroup$
    Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
    $endgroup$
    – Simply Beautiful Art
    Jan 12 at 0:50








1




1




$begingroup$
I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
$endgroup$
– user
Jan 11 at 23:24




$begingroup$
I wonder how wide should be a set of functions so that any sum had a "closed form"... :)
$endgroup$
– user
Jan 11 at 23:24












$begingroup$
@user see the edit
$endgroup$
– clathratus
Jan 11 at 23:28




$begingroup$
@user see the edit
$endgroup$
– clathratus
Jan 11 at 23:28




2




2




$begingroup$
Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
$endgroup$
– Simply Beautiful Art
Jan 12 at 0:50




$begingroup$
Similar: Evaluate $sum_{k=2}^inftyfrac{1}{k^3-1}$
$endgroup$
– Simply Beautiful Art
Jan 12 at 0:50










2 Answers
2






active

oldest

votes


















3












$begingroup$

Partial fraction decomposition tells us that



$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$



and by the property that



$$psi(z+1)=psi(z)+frac{1}{z}$$



we see that



$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$



Then we may sum both sides from 2 to infinity:



$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$



where the second equality is because $psi(h)=log(h)+O(1/h)$.





Arriving at the WolframAlpha result:



Plug in $k=3$, and thus



$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$



which is what we wanted.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
    $endgroup$
    – clathratus
    Jan 12 at 17:24










  • $begingroup$
    @clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
    $endgroup$
    – Edward H.
    Jan 13 at 20:20






  • 1




    $begingroup$
    I do care! this amazing! Thank you again :)
    $endgroup$
    – clathratus
    Jan 13 at 20:26



















3












$begingroup$

$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Do you know how to get the solution that Wolfram gives?
    $endgroup$
    – clathratus
    Jan 12 at 2:27











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070418%2fclosed-form-for-sum-limits-n-2-infty-frac1n3-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Partial fraction decomposition tells us that



$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$



and by the property that



$$psi(z+1)=psi(z)+frac{1}{z}$$



we see that



$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$



Then we may sum both sides from 2 to infinity:



$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$



where the second equality is because $psi(h)=log(h)+O(1/h)$.





Arriving at the WolframAlpha result:



Plug in $k=3$, and thus



$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$



which is what we wanted.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
    $endgroup$
    – clathratus
    Jan 12 at 17:24










  • $begingroup$
    @clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
    $endgroup$
    – Edward H.
    Jan 13 at 20:20






  • 1




    $begingroup$
    I do care! this amazing! Thank you again :)
    $endgroup$
    – clathratus
    Jan 13 at 20:26
















3












$begingroup$

Partial fraction decomposition tells us that



$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$



and by the property that



$$psi(z+1)=psi(z)+frac{1}{z}$$



we see that



$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$



Then we may sum both sides from 2 to infinity:



$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$



where the second equality is because $psi(h)=log(h)+O(1/h)$.





Arriving at the WolframAlpha result:



Plug in $k=3$, and thus



$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$



which is what we wanted.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
    $endgroup$
    – clathratus
    Jan 12 at 17:24










  • $begingroup$
    @clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
    $endgroup$
    – Edward H.
    Jan 13 at 20:20






  • 1




    $begingroup$
    I do care! this amazing! Thank you again :)
    $endgroup$
    – clathratus
    Jan 13 at 20:26














3












3








3





$begingroup$

Partial fraction decomposition tells us that



$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$



and by the property that



$$psi(z+1)=psi(z)+frac{1}{z}$$



we see that



$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$



Then we may sum both sides from 2 to infinity:



$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$



where the second equality is because $psi(h)=log(h)+O(1/h)$.





Arriving at the WolframAlpha result:



Plug in $k=3$, and thus



$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$



which is what we wanted.






share|cite|improve this answer











$endgroup$



Partial fraction decomposition tells us that



$$frac{1}{n^k-1}=sum_{omega^k=1} frac{1}{n-omega}lim_{ztoomega}frac{z-omega}{z^k-1}overset{text{L'H}}{=}frac{1}{k}sum_{omega^k=1} frac{omega}{n-omega}$$



and by the property that



$$psi(z+1)=psi(z)+frac{1}{z}$$



we see that



$$frac{1}{n^k-1}=frac{1}{k}sum_{omega^k=1} omegaBig(psi(n-omega+1)-psi(n-omega)Big)$$



Then we may sum both sides from 2 to infinity:



$$sum_{n=2}^{infty}frac{1}{n^k-1}=frac{1}{k} lim_{h to infty}sum_{omega^k=1} omegaBig(psi(h-omega)-psi(2-omega)Big)=-frac{1}{k}sum_{omega^k=1} omega ,psi(2-omega)$$



where the second equality is because $psi(h)=log(h)+O(1/h)$.





Arriving at the WolframAlpha result:



Plug in $k=3$, and thus



$$begin{align*}&quadsum_{n=2}^{infty}frac{1}{n^3-1}\
&=-frac{1}{3}sum_{omega^3=1}omega,psi(2-omega)\
&=-frac{1}{3}sum_{omega^3=1}frac{psi(2-omega)}{omega^2}quadbig(omega^3=1big)\
&=-frac{1}{3}sum_{(omega+2)^3=1}frac{psi(-omega)}{(omega+2)^2}quadbig(omegamapstoomega+2big)\
&=-frac{1}{3}sum_{omega^3+6omega^2+12omega+7=0}frac{psi(-omega)}{omega^2+4omega+4}
end{align*}$$



which is what we wanted.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 12 at 3:11

























answered Jan 12 at 0:27









Edward H.Edward H.

1739




1739








  • 1




    $begingroup$
    Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
    $endgroup$
    – clathratus
    Jan 12 at 17:24










  • $begingroup$
    @clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
    $endgroup$
    – Edward H.
    Jan 13 at 20:20






  • 1




    $begingroup$
    I do care! this amazing! Thank you again :)
    $endgroup$
    – clathratus
    Jan 13 at 20:26














  • 1




    $begingroup$
    Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
    $endgroup$
    – clathratus
    Jan 12 at 17:24










  • $begingroup$
    @clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
    $endgroup$
    – Edward H.
    Jan 13 at 20:20






  • 1




    $begingroup$
    I do care! this amazing! Thank you again :)
    $endgroup$
    – clathratus
    Jan 13 at 20:26








1




1




$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24




$begingroup$
Excellent! (+1) I can see how this could be extended to all odd $k$. Thanks!
$endgroup$
– clathratus
Jan 12 at 17:24












$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20




$begingroup$
@clathratus Thanks! Just in case you care, it can actually also generalize to the even k's by using, for example, $psi(2-z)-psi(2+z)=pi cot(pi z)-frac{1}{z}-frac{1}{z-1}-frac{1}{z+1}$.
$endgroup$
– Edward H.
Jan 13 at 20:20




1




1




$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26




$begingroup$
I do care! this amazing! Thank you again :)
$endgroup$
– clathratus
Jan 13 at 20:26











3












$begingroup$

$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Do you know how to get the solution that Wolfram gives?
    $endgroup$
    – clathratus
    Jan 12 at 2:27
















3












$begingroup$

$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Do you know how to get the solution that Wolfram gives?
    $endgroup$
    – clathratus
    Jan 12 at 2:27














3












3








3





$begingroup$

$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.






share|cite|improve this answer









$endgroup$



$$sum_{ngeq 0}frac{1}{(n+a)(n+b)}=frac{psi(a)-psi(b)}{a-b} $$
leads by partial fraction decomposition to
$$sum_{ngeq 0}frac{1}{(n+a)(n+b)(n+c)} = frac{1}{(a-b)(b-c)(c-a)}left[(b-c)psi(a)+(c-a)psi(b)+(a-b)psi(c)right] $$
In your case $a,b,c$ are the opposite of the roots of $(x+2)^3-1$, and I'll let you finish the computations: $psi(1)=-gamma$, but $frac{1}{2}(5pm isqrt{3})$ are not special arguments for $psi(x)=frac{d}{dx}logGamma(x)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 11 at 23:53









Jack D'AurizioJack D'Aurizio

291k33284667




291k33284667












  • $begingroup$
    Do you know how to get the solution that Wolfram gives?
    $endgroup$
    – clathratus
    Jan 12 at 2:27


















  • $begingroup$
    Do you know how to get the solution that Wolfram gives?
    $endgroup$
    – clathratus
    Jan 12 at 2:27
















$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27




$begingroup$
Do you know how to get the solution that Wolfram gives?
$endgroup$
– clathratus
Jan 12 at 2:27


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070418%2fclosed-form-for-sum-limits-n-2-infty-frac1n3-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅