Differentiation of a vector












0












$begingroup$


I have a matrix $A$ which is $n$ by $m$ and a vector $b$ which is $m$ by 1. I have the following expression:



$frac{delta}{delta b} mathbf{1}^{T}f(Ab)$



Where $mathbf{1}$ is a vector of ones which is $n$ by $1$, $f$ is a function which is applied elementwise and $^{T}$ represents transpose.



How can I express this just in terms of $f'$, $A$ and $b$? And does anyone have any resources on vector differentiation that could help me.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I have a matrix $A$ which is $n$ by $m$ and a vector $b$ which is $m$ by 1. I have the following expression:



    $frac{delta}{delta b} mathbf{1}^{T}f(Ab)$



    Where $mathbf{1}$ is a vector of ones which is $n$ by $1$, $f$ is a function which is applied elementwise and $^{T}$ represents transpose.



    How can I express this just in terms of $f'$, $A$ and $b$? And does anyone have any resources on vector differentiation that could help me.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I have a matrix $A$ which is $n$ by $m$ and a vector $b$ which is $m$ by 1. I have the following expression:



      $frac{delta}{delta b} mathbf{1}^{T}f(Ab)$



      Where $mathbf{1}$ is a vector of ones which is $n$ by $1$, $f$ is a function which is applied elementwise and $^{T}$ represents transpose.



      How can I express this just in terms of $f'$, $A$ and $b$? And does anyone have any resources on vector differentiation that could help me.










      share|cite|improve this question









      $endgroup$




      I have a matrix $A$ which is $n$ by $m$ and a vector $b$ which is $m$ by 1. I have the following expression:



      $frac{delta}{delta b} mathbf{1}^{T}f(Ab)$



      Where $mathbf{1}$ is a vector of ones which is $n$ by $1$, $f$ is a function which is applied elementwise and $^{T}$ represents transpose.



      How can I express this just in terms of $f'$, $A$ and $b$? And does anyone have any resources on vector differentiation that could help me.







      matrices derivatives






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 11 at 23:36









      JDoe2JDoe2

      896




      896






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Let $y=Ab,,$ then the differential of the elementwise function $f(y)$ is given by
          $$eqalign{
          df &= f'odot dy cr
          }$$
          where $odot$ is the elementwise/Hadamard product.



          Now find the differential and gradient of the cost function.
          $$eqalign{
          phi &= 1:f cr
          dphi &= 1:df = 1:(f'odot dy) = f':dy = f':A,db = A^Tf':db cr
          frac{partialphi}{partial b} &= A^Tf' cr
          }$$
          where : is the trace/Frobenius product, i.e. $,A:B={rm Tr}(A^TB)$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070446%2fdifferentiation-of-a-vector%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Let $y=Ab,,$ then the differential of the elementwise function $f(y)$ is given by
            $$eqalign{
            df &= f'odot dy cr
            }$$
            where $odot$ is the elementwise/Hadamard product.



            Now find the differential and gradient of the cost function.
            $$eqalign{
            phi &= 1:f cr
            dphi &= 1:df = 1:(f'odot dy) = f':dy = f':A,db = A^Tf':db cr
            frac{partialphi}{partial b} &= A^Tf' cr
            }$$
            where : is the trace/Frobenius product, i.e. $,A:B={rm Tr}(A^TB)$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Let $y=Ab,,$ then the differential of the elementwise function $f(y)$ is given by
              $$eqalign{
              df &= f'odot dy cr
              }$$
              where $odot$ is the elementwise/Hadamard product.



              Now find the differential and gradient of the cost function.
              $$eqalign{
              phi &= 1:f cr
              dphi &= 1:df = 1:(f'odot dy) = f':dy = f':A,db = A^Tf':db cr
              frac{partialphi}{partial b} &= A^Tf' cr
              }$$
              where : is the trace/Frobenius product, i.e. $,A:B={rm Tr}(A^TB)$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Let $y=Ab,,$ then the differential of the elementwise function $f(y)$ is given by
                $$eqalign{
                df &= f'odot dy cr
                }$$
                where $odot$ is the elementwise/Hadamard product.



                Now find the differential and gradient of the cost function.
                $$eqalign{
                phi &= 1:f cr
                dphi &= 1:df = 1:(f'odot dy) = f':dy = f':A,db = A^Tf':db cr
                frac{partialphi}{partial b} &= A^Tf' cr
                }$$
                where : is the trace/Frobenius product, i.e. $,A:B={rm Tr}(A^TB)$






                share|cite|improve this answer









                $endgroup$



                Let $y=Ab,,$ then the differential of the elementwise function $f(y)$ is given by
                $$eqalign{
                df &= f'odot dy cr
                }$$
                where $odot$ is the elementwise/Hadamard product.



                Now find the differential and gradient of the cost function.
                $$eqalign{
                phi &= 1:f cr
                dphi &= 1:df = 1:(f'odot dy) = f':dy = f':A,db = A^Tf':db cr
                frac{partialphi}{partial b} &= A^Tf' cr
                }$$
                where : is the trace/Frobenius product, i.e. $,A:B={rm Tr}(A^TB)$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 12 at 3:06









                greggreg

                8,7751824




                8,7751824






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070446%2fdifferentiation-of-a-vector%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Human spaceflight

                    Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                    張江高科駅