Calculating the integral $int_{-infty}^inftyprodlimits_{i=1}^ne^{-(y-v_i)}e^{-e^{-(y-v_i)}}dy$
$begingroup$
I'm a little rusty with my calculus so I was hoping if anyone would help me with the following integral:
$$int_{-infty}^{infty} prod _{i=1}^ne^{-(y-v_i)}e^{-e^{-(y-v_i)}}dy$$
calculus integration
$endgroup$
add a comment |
$begingroup$
I'm a little rusty with my calculus so I was hoping if anyone would help me with the following integral:
$$int_{-infty}^{infty} prod _{i=1}^ne^{-(y-v_i)}e^{-e^{-(y-v_i)}}dy$$
calculus integration
$endgroup$
add a comment |
$begingroup$
I'm a little rusty with my calculus so I was hoping if anyone would help me with the following integral:
$$int_{-infty}^{infty} prod _{i=1}^ne^{-(y-v_i)}e^{-e^{-(y-v_i)}}dy$$
calculus integration
$endgroup$
I'm a little rusty with my calculus so I was hoping if anyone would help me with the following integral:
$$int_{-infty}^{infty} prod _{i=1}^ne^{-(y-v_i)}e^{-e^{-(y-v_i)}}dy$$
calculus integration
calculus integration
edited Jan 11 at 22:07
Did
248k23225463
248k23225463
asked Mar 23 '12 at 15:28
user25720user25720
1112
1112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Using $x=mathrm e^{-y}$, the integral you are interested in is
$$
I=int_0^{+infty}prod_{i=1}^nleft(xmathrm e^{v_i}cdotmathrm e^{-mathrm e^{v_i}x}right)cdotfrac{mathrm dx}x=int_0^{+infty}ax^{n-1}mathrm e^{-bx}mathrm dx,
$$
for some suitable positive $a$ and $b$, depending on $(v_i)_{1leqslant ileqslant n}$, that I will let you discover. Thus,
$$
I=int_0^{+infty}ab^{-n}x^{n-1}mathrm e^{-x}mathrm dx=(n-1)!cdot ab^{-n}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f123635%2fcalculating-the-integral-int-infty-infty-prod-limits-i-1ne-y-v-ie%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using $x=mathrm e^{-y}$, the integral you are interested in is
$$
I=int_0^{+infty}prod_{i=1}^nleft(xmathrm e^{v_i}cdotmathrm e^{-mathrm e^{v_i}x}right)cdotfrac{mathrm dx}x=int_0^{+infty}ax^{n-1}mathrm e^{-bx}mathrm dx,
$$
for some suitable positive $a$ and $b$, depending on $(v_i)_{1leqslant ileqslant n}$, that I will let you discover. Thus,
$$
I=int_0^{+infty}ab^{-n}x^{n-1}mathrm e^{-x}mathrm dx=(n-1)!cdot ab^{-n}.
$$
$endgroup$
add a comment |
$begingroup$
Using $x=mathrm e^{-y}$, the integral you are interested in is
$$
I=int_0^{+infty}prod_{i=1}^nleft(xmathrm e^{v_i}cdotmathrm e^{-mathrm e^{v_i}x}right)cdotfrac{mathrm dx}x=int_0^{+infty}ax^{n-1}mathrm e^{-bx}mathrm dx,
$$
for some suitable positive $a$ and $b$, depending on $(v_i)_{1leqslant ileqslant n}$, that I will let you discover. Thus,
$$
I=int_0^{+infty}ab^{-n}x^{n-1}mathrm e^{-x}mathrm dx=(n-1)!cdot ab^{-n}.
$$
$endgroup$
add a comment |
$begingroup$
Using $x=mathrm e^{-y}$, the integral you are interested in is
$$
I=int_0^{+infty}prod_{i=1}^nleft(xmathrm e^{v_i}cdotmathrm e^{-mathrm e^{v_i}x}right)cdotfrac{mathrm dx}x=int_0^{+infty}ax^{n-1}mathrm e^{-bx}mathrm dx,
$$
for some suitable positive $a$ and $b$, depending on $(v_i)_{1leqslant ileqslant n}$, that I will let you discover. Thus,
$$
I=int_0^{+infty}ab^{-n}x^{n-1}mathrm e^{-x}mathrm dx=(n-1)!cdot ab^{-n}.
$$
$endgroup$
Using $x=mathrm e^{-y}$, the integral you are interested in is
$$
I=int_0^{+infty}prod_{i=1}^nleft(xmathrm e^{v_i}cdotmathrm e^{-mathrm e^{v_i}x}right)cdotfrac{mathrm dx}x=int_0^{+infty}ax^{n-1}mathrm e^{-bx}mathrm dx,
$$
for some suitable positive $a$ and $b$, depending on $(v_i)_{1leqslant ileqslant n}$, that I will let you discover. Thus,
$$
I=int_0^{+infty}ab^{-n}x^{n-1}mathrm e^{-x}mathrm dx=(n-1)!cdot ab^{-n}.
$$
answered Mar 23 '12 at 15:38
DidDid
248k23225463
248k23225463
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f123635%2fcalculating-the-integral-int-infty-infty-prod-limits-i-1ne-y-v-ie%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown