Solving for $x$ in $y=Ncdotleft(frac{10}{x}right)^{-2.6}$
$begingroup$
I want to confirm my solution of $x$ from
$$y=Ncdotleft(frac{10}{x}right)^{-2.6}$$
My answer is:
$$x=frac{N^{2.6}}{10cdot y^{2.6}}$$
Is this right? How would you solve?
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
I want to confirm my solution of $x$ from
$$y=Ncdotleft(frac{10}{x}right)^{-2.6}$$
My answer is:
$$x=frac{N^{2.6}}{10cdot y^{2.6}}$$
Is this right? How would you solve?
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
I want to confirm my solution of $x$ from
$$y=Ncdotleft(frac{10}{x}right)^{-2.6}$$
My answer is:
$$x=frac{N^{2.6}}{10cdot y^{2.6}}$$
Is this right? How would you solve?
algebra-precalculus
$endgroup$
I want to confirm my solution of $x$ from
$$y=Ncdotleft(frac{10}{x}right)^{-2.6}$$
My answer is:
$$x=frac{N^{2.6}}{10cdot y^{2.6}}$$
Is this right? How would you solve?
algebra-precalculus
algebra-precalculus
edited Jan 13 at 19:02
user3063
asked Jan 13 at 8:12
user3063user3063
1143
1143
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
First, notice that
$$
y = N cdot left( dfrac{10}{x} right)^{-2.6} = N cdot left( dfrac{x}{10} right)^{2.6}
$$
Next, divide both sides by $N$:
$$
dfrac{y}{N} = left( dfrac{x}{10} right)^{2.6}
$$
Now exponentiate with $frac{1}{2.6}$ to get
$$
left( dfrac{y}{N} right)^{frac{1}{2.6}} = dfrac{x}{10}
$$
Finally, multiply by $10$:
$$
10 cdot left( dfrac{y}{N} right)^{frac{1}{2.6}} = x
$$
$endgroup$
1
$begingroup$
Thank you so much!
$endgroup$
– user3063
Jan 13 at 10:07
add a comment |
$begingroup$
Let $$y = N cdot (frac{10}{x})^{-2.6}$$
Then,
$$y cdot (frac{10}{x})^{2.6} = N$$
$$ y cdot 10 ^{2.6} = N cdot x^{2.6}$$
$$ (y cdot 10^{2.6})^{1/2.6} = (N cdot x^{2.6})^{1/2.6}$$
$$ y^{1/2.6} cdot 10 = N^{1/2.6} cdot x$$
$$ x = y^{1/2.6} cdot 10 cdot N^{-1/2.6} = (frac{y}{N})^{1/2.6} cdot 10 $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071795%2fsolving-for-x-in-y-n-cdot-left-frac10x-right-2-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First, notice that
$$
y = N cdot left( dfrac{10}{x} right)^{-2.6} = N cdot left( dfrac{x}{10} right)^{2.6}
$$
Next, divide both sides by $N$:
$$
dfrac{y}{N} = left( dfrac{x}{10} right)^{2.6}
$$
Now exponentiate with $frac{1}{2.6}$ to get
$$
left( dfrac{y}{N} right)^{frac{1}{2.6}} = dfrac{x}{10}
$$
Finally, multiply by $10$:
$$
10 cdot left( dfrac{y}{N} right)^{frac{1}{2.6}} = x
$$
$endgroup$
1
$begingroup$
Thank you so much!
$endgroup$
– user3063
Jan 13 at 10:07
add a comment |
$begingroup$
First, notice that
$$
y = N cdot left( dfrac{10}{x} right)^{-2.6} = N cdot left( dfrac{x}{10} right)^{2.6}
$$
Next, divide both sides by $N$:
$$
dfrac{y}{N} = left( dfrac{x}{10} right)^{2.6}
$$
Now exponentiate with $frac{1}{2.6}$ to get
$$
left( dfrac{y}{N} right)^{frac{1}{2.6}} = dfrac{x}{10}
$$
Finally, multiply by $10$:
$$
10 cdot left( dfrac{y}{N} right)^{frac{1}{2.6}} = x
$$
$endgroup$
1
$begingroup$
Thank you so much!
$endgroup$
– user3063
Jan 13 at 10:07
add a comment |
$begingroup$
First, notice that
$$
y = N cdot left( dfrac{10}{x} right)^{-2.6} = N cdot left( dfrac{x}{10} right)^{2.6}
$$
Next, divide both sides by $N$:
$$
dfrac{y}{N} = left( dfrac{x}{10} right)^{2.6}
$$
Now exponentiate with $frac{1}{2.6}$ to get
$$
left( dfrac{y}{N} right)^{frac{1}{2.6}} = dfrac{x}{10}
$$
Finally, multiply by $10$:
$$
10 cdot left( dfrac{y}{N} right)^{frac{1}{2.6}} = x
$$
$endgroup$
First, notice that
$$
y = N cdot left( dfrac{10}{x} right)^{-2.6} = N cdot left( dfrac{x}{10} right)^{2.6}
$$
Next, divide both sides by $N$:
$$
dfrac{y}{N} = left( dfrac{x}{10} right)^{2.6}
$$
Now exponentiate with $frac{1}{2.6}$ to get
$$
left( dfrac{y}{N} right)^{frac{1}{2.6}} = dfrac{x}{10}
$$
Finally, multiply by $10$:
$$
10 cdot left( dfrac{y}{N} right)^{frac{1}{2.6}} = x
$$
answered Jan 13 at 9:22
Björn FriedrichBjörn Friedrich
2,67461831
2,67461831
1
$begingroup$
Thank you so much!
$endgroup$
– user3063
Jan 13 at 10:07
add a comment |
1
$begingroup$
Thank you so much!
$endgroup$
– user3063
Jan 13 at 10:07
1
1
$begingroup$
Thank you so much!
$endgroup$
– user3063
Jan 13 at 10:07
$begingroup$
Thank you so much!
$endgroup$
– user3063
Jan 13 at 10:07
add a comment |
$begingroup$
Let $$y = N cdot (frac{10}{x})^{-2.6}$$
Then,
$$y cdot (frac{10}{x})^{2.6} = N$$
$$ y cdot 10 ^{2.6} = N cdot x^{2.6}$$
$$ (y cdot 10^{2.6})^{1/2.6} = (N cdot x^{2.6})^{1/2.6}$$
$$ y^{1/2.6} cdot 10 = N^{1/2.6} cdot x$$
$$ x = y^{1/2.6} cdot 10 cdot N^{-1/2.6} = (frac{y}{N})^{1/2.6} cdot 10 $$
$endgroup$
add a comment |
$begingroup$
Let $$y = N cdot (frac{10}{x})^{-2.6}$$
Then,
$$y cdot (frac{10}{x})^{2.6} = N$$
$$ y cdot 10 ^{2.6} = N cdot x^{2.6}$$
$$ (y cdot 10^{2.6})^{1/2.6} = (N cdot x^{2.6})^{1/2.6}$$
$$ y^{1/2.6} cdot 10 = N^{1/2.6} cdot x$$
$$ x = y^{1/2.6} cdot 10 cdot N^{-1/2.6} = (frac{y}{N})^{1/2.6} cdot 10 $$
$endgroup$
add a comment |
$begingroup$
Let $$y = N cdot (frac{10}{x})^{-2.6}$$
Then,
$$y cdot (frac{10}{x})^{2.6} = N$$
$$ y cdot 10 ^{2.6} = N cdot x^{2.6}$$
$$ (y cdot 10^{2.6})^{1/2.6} = (N cdot x^{2.6})^{1/2.6}$$
$$ y^{1/2.6} cdot 10 = N^{1/2.6} cdot x$$
$$ x = y^{1/2.6} cdot 10 cdot N^{-1/2.6} = (frac{y}{N})^{1/2.6} cdot 10 $$
$endgroup$
Let $$y = N cdot (frac{10}{x})^{-2.6}$$
Then,
$$y cdot (frac{10}{x})^{2.6} = N$$
$$ y cdot 10 ^{2.6} = N cdot x^{2.6}$$
$$ (y cdot 10^{2.6})^{1/2.6} = (N cdot x^{2.6})^{1/2.6}$$
$$ y^{1/2.6} cdot 10 = N^{1/2.6} cdot x$$
$$ x = y^{1/2.6} cdot 10 cdot N^{-1/2.6} = (frac{y}{N})^{1/2.6} cdot 10 $$
edited Jan 13 at 9:05
answered Jan 13 at 8:51
idriskameniidriskameni
734321
734321
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071795%2fsolving-for-x-in-y-n-cdot-left-frac10x-right-2-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown