Can we simplify this logarithm? if so, please provides some tips
$begingroup$
${|x|^{11/10}} log_{|x|^{{1/10}}}|x|$.
I only know doing the first step, not sure if it is correct
$log_{|x|^{{1/10}}}(|x|^{|x|^{11/10}})$
as got stuck following this proof. Please help understand how we can get step two from step one.
logarithms
$endgroup$
add a comment |
$begingroup$
${|x|^{11/10}} log_{|x|^{{1/10}}}|x|$.
I only know doing the first step, not sure if it is correct
$log_{|x|^{{1/10}}}(|x|^{|x|^{11/10}})$
as got stuck following this proof. Please help understand how we can get step two from step one.
logarithms
$endgroup$
add a comment |
$begingroup$
${|x|^{11/10}} log_{|x|^{{1/10}}}|x|$.
I only know doing the first step, not sure if it is correct
$log_{|x|^{{1/10}}}(|x|^{|x|^{11/10}})$
as got stuck following this proof. Please help understand how we can get step two from step one.
logarithms
$endgroup$
${|x|^{11/10}} log_{|x|^{{1/10}}}|x|$.
I only know doing the first step, not sure if it is correct
$log_{|x|^{{1/10}}}(|x|^{|x|^{11/10}})$
as got stuck following this proof. Please help understand how we can get step two from step one.
logarithms
logarithms
edited Jan 13 at 7:50
Siong Thye Goh
103k1468119
103k1468119
asked Jan 13 at 7:42
MaxfieldMaxfield
424
424
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If I interpret your question correctly, $V$ means the set of vertices and $E$ means the set of edges.
We have $|E|=O(|V|^2)$.
Hence, we can drop the first term.
Also, note that $log_ab =frac{log b}{log a}$.
$endgroup$
add a comment |
$begingroup$
Consider
$$y=x^alog_{x^b} (x)$$ Using the laws of logarithms
$$y=frac{x^a log (x)}{log left(x^bright)}=frac{x^a log (x)}{blog left(xright)}=frac 1b x^a$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071779%2fcan-we-simplify-this-logarithm-if-so-please-provides-some-tips%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If I interpret your question correctly, $V$ means the set of vertices and $E$ means the set of edges.
We have $|E|=O(|V|^2)$.
Hence, we can drop the first term.
Also, note that $log_ab =frac{log b}{log a}$.
$endgroup$
add a comment |
$begingroup$
If I interpret your question correctly, $V$ means the set of vertices and $E$ means the set of edges.
We have $|E|=O(|V|^2)$.
Hence, we can drop the first term.
Also, note that $log_ab =frac{log b}{log a}$.
$endgroup$
add a comment |
$begingroup$
If I interpret your question correctly, $V$ means the set of vertices and $E$ means the set of edges.
We have $|E|=O(|V|^2)$.
Hence, we can drop the first term.
Also, note that $log_ab =frac{log b}{log a}$.
$endgroup$
If I interpret your question correctly, $V$ means the set of vertices and $E$ means the set of edges.
We have $|E|=O(|V|^2)$.
Hence, we can drop the first term.
Also, note that $log_ab =frac{log b}{log a}$.
answered Jan 13 at 7:51
Siong Thye GohSiong Thye Goh
103k1468119
103k1468119
add a comment |
add a comment |
$begingroup$
Consider
$$y=x^alog_{x^b} (x)$$ Using the laws of logarithms
$$y=frac{x^a log (x)}{log left(x^bright)}=frac{x^a log (x)}{blog left(xright)}=frac 1b x^a$$
$endgroup$
add a comment |
$begingroup$
Consider
$$y=x^alog_{x^b} (x)$$ Using the laws of logarithms
$$y=frac{x^a log (x)}{log left(x^bright)}=frac{x^a log (x)}{blog left(xright)}=frac 1b x^a$$
$endgroup$
add a comment |
$begingroup$
Consider
$$y=x^alog_{x^b} (x)$$ Using the laws of logarithms
$$y=frac{x^a log (x)}{log left(x^bright)}=frac{x^a log (x)}{blog left(xright)}=frac 1b x^a$$
$endgroup$
Consider
$$y=x^alog_{x^b} (x)$$ Using the laws of logarithms
$$y=frac{x^a log (x)}{log left(x^bright)}=frac{x^a log (x)}{blog left(xright)}=frac 1b x^a$$
answered Jan 13 at 10:03
Claude LeiboviciClaude Leibovici
124k1157135
124k1157135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071779%2fcan-we-simplify-this-logarithm-if-so-please-provides-some-tips%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown