Showing that $sup(Acdot B) = sup(A)cdotsup(B)$ for $A$ and $B$ subsets of non-negative reals
$begingroup$
While $A cdot B={x cdot y mid x in A, y in B}$, show that, for $A$, $B subseteq [0,infty)$,
$$sup(A cdot B)= sup(A) cdot sup(B)$$
My demonstration:
First:
$$forall ain A, alesup(A)$$
$$forall bin B, blesup(B)$$
so,
$$begin{align}
acdot blesup(A)cdotsup(B)
&implies
acdot b le sup(A cdot B)lesup(A)cdotsup(B) \
&implies
sup(Acdot B)lesup(A)cdotsup(B) tag{1}
end{align}$$
Second: Using $(1)$, while $bne0$,
$$a le frac{sup(Acdot B)}{b} implies sup(A)le frac{sup(Acdot B)}{b}$$
so
$$begin{align}
blefrac{sup(Acdot B)}{sup(A)}
&implies sup(B)le frac{sup(Acdot B)}{sup(A)} \
&implies sup(A)cdotsup(B)le sup(Acdot B) tag{2}
end{align}$$
Then $(1)$ and $(2)$ imply
$$sup(A cdot B)= sup(A) cdot sup(B) tag{3}$$
Is the demonstration correct? Can the case $b = 0$ be discarded for being trivial?
calculus proof-verification supremum-and-infimum
$endgroup$
add a comment |
$begingroup$
While $A cdot B={x cdot y mid x in A, y in B}$, show that, for $A$, $B subseteq [0,infty)$,
$$sup(A cdot B)= sup(A) cdot sup(B)$$
My demonstration:
First:
$$forall ain A, alesup(A)$$
$$forall bin B, blesup(B)$$
so,
$$begin{align}
acdot blesup(A)cdotsup(B)
&implies
acdot b le sup(A cdot B)lesup(A)cdotsup(B) \
&implies
sup(Acdot B)lesup(A)cdotsup(B) tag{1}
end{align}$$
Second: Using $(1)$, while $bne0$,
$$a le frac{sup(Acdot B)}{b} implies sup(A)le frac{sup(Acdot B)}{b}$$
so
$$begin{align}
blefrac{sup(Acdot B)}{sup(A)}
&implies sup(B)le frac{sup(Acdot B)}{sup(A)} \
&implies sup(A)cdotsup(B)le sup(Acdot B) tag{2}
end{align}$$
Then $(1)$ and $(2)$ imply
$$sup(A cdot B)= sup(A) cdot sup(B) tag{3}$$
Is the demonstration correct? Can the case $b = 0$ be discarded for being trivial?
calculus proof-verification supremum-and-infimum
$endgroup$
add a comment |
$begingroup$
While $A cdot B={x cdot y mid x in A, y in B}$, show that, for $A$, $B subseteq [0,infty)$,
$$sup(A cdot B)= sup(A) cdot sup(B)$$
My demonstration:
First:
$$forall ain A, alesup(A)$$
$$forall bin B, blesup(B)$$
so,
$$begin{align}
acdot blesup(A)cdotsup(B)
&implies
acdot b le sup(A cdot B)lesup(A)cdotsup(B) \
&implies
sup(Acdot B)lesup(A)cdotsup(B) tag{1}
end{align}$$
Second: Using $(1)$, while $bne0$,
$$a le frac{sup(Acdot B)}{b} implies sup(A)le frac{sup(Acdot B)}{b}$$
so
$$begin{align}
blefrac{sup(Acdot B)}{sup(A)}
&implies sup(B)le frac{sup(Acdot B)}{sup(A)} \
&implies sup(A)cdotsup(B)le sup(Acdot B) tag{2}
end{align}$$
Then $(1)$ and $(2)$ imply
$$sup(A cdot B)= sup(A) cdot sup(B) tag{3}$$
Is the demonstration correct? Can the case $b = 0$ be discarded for being trivial?
calculus proof-verification supremum-and-infimum
$endgroup$
While $A cdot B={x cdot y mid x in A, y in B}$, show that, for $A$, $B subseteq [0,infty)$,
$$sup(A cdot B)= sup(A) cdot sup(B)$$
My demonstration:
First:
$$forall ain A, alesup(A)$$
$$forall bin B, blesup(B)$$
so,
$$begin{align}
acdot blesup(A)cdotsup(B)
&implies
acdot b le sup(A cdot B)lesup(A)cdotsup(B) \
&implies
sup(Acdot B)lesup(A)cdotsup(B) tag{1}
end{align}$$
Second: Using $(1)$, while $bne0$,
$$a le frac{sup(Acdot B)}{b} implies sup(A)le frac{sup(Acdot B)}{b}$$
so
$$begin{align}
blefrac{sup(Acdot B)}{sup(A)}
&implies sup(B)le frac{sup(Acdot B)}{sup(A)} \
&implies sup(A)cdotsup(B)le sup(Acdot B) tag{2}
end{align}$$
Then $(1)$ and $(2)$ imply
$$sup(A cdot B)= sup(A) cdot sup(B) tag{3}$$
Is the demonstration correct? Can the case $b = 0$ be discarded for being trivial?
calculus proof-verification supremum-and-infimum
calculus proof-verification supremum-and-infimum
edited Jan 13 at 8:17
Blue
49.1k870156
49.1k870156
asked Jan 13 at 7:52
Francisco SalazarFrancisco Salazar
85
85
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It is basically correct. But you should have started your proof by saying that the cases in which $A={0}$ or $B={0}$ are trivial and that you will assume that $A,Bneq{0}$.
$endgroup$
$begingroup$
thanks!!I will be more rigorous next time.
$endgroup$
– Francisco Salazar
Jan 13 at 8:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071789%2fshowing-that-supa-cdot-b-supa-cdot-supb-for-a-and-b-subsets-of-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is basically correct. But you should have started your proof by saying that the cases in which $A={0}$ or $B={0}$ are trivial and that you will assume that $A,Bneq{0}$.
$endgroup$
$begingroup$
thanks!!I will be more rigorous next time.
$endgroup$
– Francisco Salazar
Jan 13 at 8:07
add a comment |
$begingroup$
It is basically correct. But you should have started your proof by saying that the cases in which $A={0}$ or $B={0}$ are trivial and that you will assume that $A,Bneq{0}$.
$endgroup$
$begingroup$
thanks!!I will be more rigorous next time.
$endgroup$
– Francisco Salazar
Jan 13 at 8:07
add a comment |
$begingroup$
It is basically correct. But you should have started your proof by saying that the cases in which $A={0}$ or $B={0}$ are trivial and that you will assume that $A,Bneq{0}$.
$endgroup$
It is basically correct. But you should have started your proof by saying that the cases in which $A={0}$ or $B={0}$ are trivial and that you will assume that $A,Bneq{0}$.
answered Jan 13 at 8:01
José Carlos SantosJosé Carlos Santos
168k23132236
168k23132236
$begingroup$
thanks!!I will be more rigorous next time.
$endgroup$
– Francisco Salazar
Jan 13 at 8:07
add a comment |
$begingroup$
thanks!!I will be more rigorous next time.
$endgroup$
– Francisco Salazar
Jan 13 at 8:07
$begingroup$
thanks!!I will be more rigorous next time.
$endgroup$
– Francisco Salazar
Jan 13 at 8:07
$begingroup$
thanks!!I will be more rigorous next time.
$endgroup$
– Francisco Salazar
Jan 13 at 8:07
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071789%2fshowing-that-supa-cdot-b-supa-cdot-supb-for-a-and-b-subsets-of-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown