$(-1)^3$ has different results when evaluated as $(-1)times(-1)times(-1) = -1$ vs $((-1)^2)^{3/2} = 1$. Which...
$begingroup$
I know that
$$(-1)^3=(-1)times(-1)times(-1)=-1 tag{1}$$
but also
$$(-1)^3=((-1)^2)^{3/2}=1^{3/2}=1 tag{2}$$
So which gives the correct value of $(-1)^3$?
arithmetic exponentiation fractions
$endgroup$
add a comment |
$begingroup$
I know that
$$(-1)^3=(-1)times(-1)times(-1)=-1 tag{1}$$
but also
$$(-1)^3=((-1)^2)^{3/2}=1^{3/2}=1 tag{2}$$
So which gives the correct value of $(-1)^3$?
arithmetic exponentiation fractions
$endgroup$
add a comment |
$begingroup$
I know that
$$(-1)^3=(-1)times(-1)times(-1)=-1 tag{1}$$
but also
$$(-1)^3=((-1)^2)^{3/2}=1^{3/2}=1 tag{2}$$
So which gives the correct value of $(-1)^3$?
arithmetic exponentiation fractions
$endgroup$
I know that
$$(-1)^3=(-1)times(-1)times(-1)=-1 tag{1}$$
but also
$$(-1)^3=((-1)^2)^{3/2}=1^{3/2}=1 tag{2}$$
So which gives the correct value of $(-1)^3$?
arithmetic exponentiation fractions
arithmetic exponentiation fractions
edited Jan 13 at 8:06
Blue
49.1k870156
49.1k870156
asked Jan 13 at 7:49
senxsenx
163
163
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The first equality is correct. The second one isn't: it assumes that $a^{bc}=(a^b)^c$. This is true indeed if $a>0$ (and $b,cinmathbb R$), but $-1<0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071786%2f13-has-different-results-when-evaluated-as-1-times-1-times-1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The first equality is correct. The second one isn't: it assumes that $a^{bc}=(a^b)^c$. This is true indeed if $a>0$ (and $b,cinmathbb R$), but $-1<0$.
$endgroup$
add a comment |
$begingroup$
The first equality is correct. The second one isn't: it assumes that $a^{bc}=(a^b)^c$. This is true indeed if $a>0$ (and $b,cinmathbb R$), but $-1<0$.
$endgroup$
add a comment |
$begingroup$
The first equality is correct. The second one isn't: it assumes that $a^{bc}=(a^b)^c$. This is true indeed if $a>0$ (and $b,cinmathbb R$), but $-1<0$.
$endgroup$
The first equality is correct. The second one isn't: it assumes that $a^{bc}=(a^b)^c$. This is true indeed if $a>0$ (and $b,cinmathbb R$), but $-1<0$.
answered Jan 13 at 7:55
José Carlos SantosJosé Carlos Santos
168k23132236
168k23132236
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071786%2f13-has-different-results-when-evaluated-as-1-times-1-times-1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown