Generalize $sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)}=2$
$begingroup$
In this paper on section [5],
Recently J. Choi [4, Corollary 3] proved a sequence of identities:
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)}=2tag1$$
Let just generalize $(1)$
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)cdots(n+k)}tag2$$
where $kge 2$
We conjectured the closed form of $(2)$ to be
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)cdots(n+k)}=frac{2^k}{(2k-2)!!}cdot frac{1}{(k-1)^3}=frac{2}{(k-1)^3(k-1)!}tag3$$
How may we prove $(3)$?
sequences-and-series harmonic-functions
$endgroup$
add a comment |
$begingroup$
In this paper on section [5],
Recently J. Choi [4, Corollary 3] proved a sequence of identities:
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)}=2tag1$$
Let just generalize $(1)$
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)cdots(n+k)}tag2$$
where $kge 2$
We conjectured the closed form of $(2)$ to be
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)cdots(n+k)}=frac{2^k}{(2k-2)!!}cdot frac{1}{(k-1)^3}=frac{2}{(k-1)^3(k-1)!}tag3$$
How may we prove $(3)$?
sequences-and-series harmonic-functions
$endgroup$
add a comment |
$begingroup$
In this paper on section [5],
Recently J. Choi [4, Corollary 3] proved a sequence of identities:
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)}=2tag1$$
Let just generalize $(1)$
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)cdots(n+k)}tag2$$
where $kge 2$
We conjectured the closed form of $(2)$ to be
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)cdots(n+k)}=frac{2^k}{(2k-2)!!}cdot frac{1}{(k-1)^3}=frac{2}{(k-1)^3(k-1)!}tag3$$
How may we prove $(3)$?
sequences-and-series harmonic-functions
$endgroup$
In this paper on section [5],
Recently J. Choi [4, Corollary 3] proved a sequence of identities:
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)}=2tag1$$
Let just generalize $(1)$
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)cdots(n+k)}tag2$$
where $kge 2$
We conjectured the closed form of $(2)$ to be
$$sum_{n=1}^{infty}frac{H_n^2-H_n^{(2)}}{(n+1)(n+2)cdots(n+k)}=frac{2^k}{(2k-2)!!}cdot frac{1}{(k-1)^3}=frac{2}{(k-1)^3(k-1)!}tag3$$
How may we prove $(3)$?
sequences-and-series harmonic-functions
sequences-and-series harmonic-functions
edited Jan 13 at 20:16
user583851
asked Jan 13 at 8:25
user583851user583851
518110
518110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Just realize you are computing
$$int_{0}^{1}(1-x)^n log^2(1-x),dx,qquad int_{0}^{1}(1-x)^mtext{Li}_2(x),dx $$
which are elementary integrals.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071803%2fgeneralize-sum-n-1-infty-frach-n2-h-n2n1n2-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Just realize you are computing
$$int_{0}^{1}(1-x)^n log^2(1-x),dx,qquad int_{0}^{1}(1-x)^mtext{Li}_2(x),dx $$
which are elementary integrals.
$endgroup$
add a comment |
$begingroup$
Just realize you are computing
$$int_{0}^{1}(1-x)^n log^2(1-x),dx,qquad int_{0}^{1}(1-x)^mtext{Li}_2(x),dx $$
which are elementary integrals.
$endgroup$
add a comment |
$begingroup$
Just realize you are computing
$$int_{0}^{1}(1-x)^n log^2(1-x),dx,qquad int_{0}^{1}(1-x)^mtext{Li}_2(x),dx $$
which are elementary integrals.
$endgroup$
Just realize you are computing
$$int_{0}^{1}(1-x)^n log^2(1-x),dx,qquad int_{0}^{1}(1-x)^mtext{Li}_2(x),dx $$
which are elementary integrals.
answered Jan 13 at 22:21
Jack D'AurizioJack D'Aurizio
291k33284668
291k33284668
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071803%2fgeneralize-sum-n-1-infty-frach-n2-h-n2n1n2-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown