Prove that $sin a + sin b + sin(a+b) = 4 sinfrac12(a+b) cos frac12a cosfrac12b$
Helping my son with his trigonometry review. We know that
$$sin(a+b) = sin a cos b + cos a sin b$$
We also know that
$$sin a cos b = frac12 left(sin(a-b) + sin(a+b)right)$$
And we have
$$sin a + sin b = 2 sinfrac12(a+b)cosfrac12(a-b)$$
From there, we seem to be missing how to get to the right-hand side of the equation.
We first expand
$$sin a + sin b = 2 sinfrac12(a+b) cosfrac12(a-b)$$
Then we add $sin(a+b)$, which is $sin a cos b + cos a sin b$.
We now have:
$$2 sinfrac12(a+b) cosfrac12(a-b) + frac12 left(sin(a-b) + sin (a+b)right) + frac12 left( sin(b-a) + sin (a+b)right)$$
From there, we can't see how to obtain the right-hand side of the equation which is
$$4 sinfrac12(a+b) cosfrac12a cosfrac12b$$
trigonometry
add a comment |
Helping my son with his trigonometry review. We know that
$$sin(a+b) = sin a cos b + cos a sin b$$
We also know that
$$sin a cos b = frac12 left(sin(a-b) + sin(a+b)right)$$
And we have
$$sin a + sin b = 2 sinfrac12(a+b)cosfrac12(a-b)$$
From there, we seem to be missing how to get to the right-hand side of the equation.
We first expand
$$sin a + sin b = 2 sinfrac12(a+b) cosfrac12(a-b)$$
Then we add $sin(a+b)$, which is $sin a cos b + cos a sin b$.
We now have:
$$2 sinfrac12(a+b) cosfrac12(a-b) + frac12 left(sin(a-b) + sin (a+b)right) + frac12 left( sin(b-a) + sin (a+b)right)$$
From there, we can't see how to obtain the right-hand side of the equation which is
$$4 sinfrac12(a+b) cosfrac12a cosfrac12b$$
trigonometry
add a comment |
Helping my son with his trigonometry review. We know that
$$sin(a+b) = sin a cos b + cos a sin b$$
We also know that
$$sin a cos b = frac12 left(sin(a-b) + sin(a+b)right)$$
And we have
$$sin a + sin b = 2 sinfrac12(a+b)cosfrac12(a-b)$$
From there, we seem to be missing how to get to the right-hand side of the equation.
We first expand
$$sin a + sin b = 2 sinfrac12(a+b) cosfrac12(a-b)$$
Then we add $sin(a+b)$, which is $sin a cos b + cos a sin b$.
We now have:
$$2 sinfrac12(a+b) cosfrac12(a-b) + frac12 left(sin(a-b) + sin (a+b)right) + frac12 left( sin(b-a) + sin (a+b)right)$$
From there, we can't see how to obtain the right-hand side of the equation which is
$$4 sinfrac12(a+b) cosfrac12a cosfrac12b$$
trigonometry
Helping my son with his trigonometry review. We know that
$$sin(a+b) = sin a cos b + cos a sin b$$
We also know that
$$sin a cos b = frac12 left(sin(a-b) + sin(a+b)right)$$
And we have
$$sin a + sin b = 2 sinfrac12(a+b)cosfrac12(a-b)$$
From there, we seem to be missing how to get to the right-hand side of the equation.
We first expand
$$sin a + sin b = 2 sinfrac12(a+b) cosfrac12(a-b)$$
Then we add $sin(a+b)$, which is $sin a cos b + cos a sin b$.
We now have:
$$2 sinfrac12(a+b) cosfrac12(a-b) + frac12 left(sin(a-b) + sin (a+b)right) + frac12 left( sin(b-a) + sin (a+b)right)$$
From there, we can't see how to obtain the right-hand side of the equation which is
$$4 sinfrac12(a+b) cosfrac12a cosfrac12b$$
trigonometry
trigonometry
edited Dec 27 '18 at 14:41
Blue
47.6k870151
47.6k870151
asked Dec 27 '18 at 14:31
Christopher Paggen
111
111
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
Since
begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
[see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
Hence,
begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
add a comment |
Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$
thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
– Christopher Paggen
Dec 27 '18 at 15:04
add a comment |
It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
$$
sin2A+sin2B+sin2(A+B)
$$
The right-hand side screams “sum-to-product”! OK, let's apply the formula
$$
sin2A+sin2B=2sin(A+B)cos(A-B)
$$
so the left-hand side becomes
begin{align}
sin2A+sin2B+sin2(A+B)
&=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
&=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
&=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
&=4sin(A+B)cos Acos B
end{align}
add a comment |
begin{align}
sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
&=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
end{align}
Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.
add a comment |
An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053978%2fprove-that-sin-a-sin-b-sinab-4-sin-frac12ab-cos-frac12a-cos%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
Since
begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
[see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
Hence,
begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
add a comment |
Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
Since
begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
[see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
Hence,
begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
add a comment |
Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
Since
begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
[see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
Hence,
begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
Since
begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
[see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
Hence,
begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
edited Dec 27 '18 at 15:23
answered Dec 27 '18 at 15:10
Mike
1,391221
1,391221
add a comment |
add a comment |
Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$
thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
– Christopher Paggen
Dec 27 '18 at 15:04
add a comment |
Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$
thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
– Christopher Paggen
Dec 27 '18 at 15:04
add a comment |
Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$
Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$
answered Dec 27 '18 at 14:41
Dr. Sonnhard Graubner
73.3k42865
73.3k42865
thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
– Christopher Paggen
Dec 27 '18 at 15:04
add a comment |
thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
– Christopher Paggen
Dec 27 '18 at 15:04
thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
– Christopher Paggen
Dec 27 '18 at 15:04
thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
– Christopher Paggen
Dec 27 '18 at 15:04
add a comment |
It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
$$
sin2A+sin2B+sin2(A+B)
$$
The right-hand side screams “sum-to-product”! OK, let's apply the formula
$$
sin2A+sin2B=2sin(A+B)cos(A-B)
$$
so the left-hand side becomes
begin{align}
sin2A+sin2B+sin2(A+B)
&=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
&=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
&=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
&=4sin(A+B)cos Acos B
end{align}
add a comment |
It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
$$
sin2A+sin2B+sin2(A+B)
$$
The right-hand side screams “sum-to-product”! OK, let's apply the formula
$$
sin2A+sin2B=2sin(A+B)cos(A-B)
$$
so the left-hand side becomes
begin{align}
sin2A+sin2B+sin2(A+B)
&=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
&=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
&=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
&=4sin(A+B)cos Acos B
end{align}
add a comment |
It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
$$
sin2A+sin2B+sin2(A+B)
$$
The right-hand side screams “sum-to-product”! OK, let's apply the formula
$$
sin2A+sin2B=2sin(A+B)cos(A-B)
$$
so the left-hand side becomes
begin{align}
sin2A+sin2B+sin2(A+B)
&=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
&=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
&=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
&=4sin(A+B)cos Acos B
end{align}
It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
$$
sin2A+sin2B+sin2(A+B)
$$
The right-hand side screams “sum-to-product”! OK, let's apply the formula
$$
sin2A+sin2B=2sin(A+B)cos(A-B)
$$
so the left-hand side becomes
begin{align}
sin2A+sin2B+sin2(A+B)
&=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
&=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
&=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
&=4sin(A+B)cos Acos B
end{align}
answered Dec 27 '18 at 15:55
egreg
178k1484201
178k1484201
add a comment |
add a comment |
begin{align}
sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
&=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
end{align}
Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.
add a comment |
begin{align}
sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
&=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
end{align}
Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.
add a comment |
begin{align}
sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
&=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
end{align}
Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.
begin{align}
sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
&=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
end{align}
Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.
edited Dec 27 '18 at 14:52
answered Dec 27 '18 at 14:46
Thomas Shelby
1,657216
1,657216
add a comment |
add a comment |
An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$
add a comment |
An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$
add a comment |
An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$
An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$
answered Dec 27 '18 at 14:56
J.G.
23k22137
23k22137
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053978%2fprove-that-sin-a-sin-b-sinab-4-sin-frac12ab-cos-frac12a-cos%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown