Prove that $sin a + sin b + sin(a+b) = 4 sinfrac12(a+b) cos frac12a cosfrac12b$












2














Helping my son with his trigonometry review. We know that
$$sin(a+b) = sin a cos b + cos a sin b$$
We also know that
$$sin a cos b = frac12 left(sin(a-b) + sin(a+b)right)$$
And we have
$$sin a + sin b = 2 sinfrac12(a+b)cosfrac12(a-b)$$
From there, we seem to be missing how to get to the right-hand side of the equation.



We first expand
$$sin a + sin b = 2 sinfrac12(a+b) cosfrac12(a-b)$$
Then we add $sin(a+b)$, which is $sin a cos b + cos a sin b$.
We now have:



$$2 sinfrac12(a+b) cosfrac12(a-b) + frac12 left(sin(a-b) + sin (a+b)right) + frac12 left( sin(b-a) + sin (a+b)right)$$



From there, we can't see how to obtain the right-hand side of the equation which is
$$4 sinfrac12(a+b) cosfrac12a cosfrac12b$$










share|cite|improve this question





























    2














    Helping my son with his trigonometry review. We know that
    $$sin(a+b) = sin a cos b + cos a sin b$$
    We also know that
    $$sin a cos b = frac12 left(sin(a-b) + sin(a+b)right)$$
    And we have
    $$sin a + sin b = 2 sinfrac12(a+b)cosfrac12(a-b)$$
    From there, we seem to be missing how to get to the right-hand side of the equation.



    We first expand
    $$sin a + sin b = 2 sinfrac12(a+b) cosfrac12(a-b)$$
    Then we add $sin(a+b)$, which is $sin a cos b + cos a sin b$.
    We now have:



    $$2 sinfrac12(a+b) cosfrac12(a-b) + frac12 left(sin(a-b) + sin (a+b)right) + frac12 left( sin(b-a) + sin (a+b)right)$$



    From there, we can't see how to obtain the right-hand side of the equation which is
    $$4 sinfrac12(a+b) cosfrac12a cosfrac12b$$










    share|cite|improve this question



























      2












      2








      2







      Helping my son with his trigonometry review. We know that
      $$sin(a+b) = sin a cos b + cos a sin b$$
      We also know that
      $$sin a cos b = frac12 left(sin(a-b) + sin(a+b)right)$$
      And we have
      $$sin a + sin b = 2 sinfrac12(a+b)cosfrac12(a-b)$$
      From there, we seem to be missing how to get to the right-hand side of the equation.



      We first expand
      $$sin a + sin b = 2 sinfrac12(a+b) cosfrac12(a-b)$$
      Then we add $sin(a+b)$, which is $sin a cos b + cos a sin b$.
      We now have:



      $$2 sinfrac12(a+b) cosfrac12(a-b) + frac12 left(sin(a-b) + sin (a+b)right) + frac12 left( sin(b-a) + sin (a+b)right)$$



      From there, we can't see how to obtain the right-hand side of the equation which is
      $$4 sinfrac12(a+b) cosfrac12a cosfrac12b$$










      share|cite|improve this question















      Helping my son with his trigonometry review. We know that
      $$sin(a+b) = sin a cos b + cos a sin b$$
      We also know that
      $$sin a cos b = frac12 left(sin(a-b) + sin(a+b)right)$$
      And we have
      $$sin a + sin b = 2 sinfrac12(a+b)cosfrac12(a-b)$$
      From there, we seem to be missing how to get to the right-hand side of the equation.



      We first expand
      $$sin a + sin b = 2 sinfrac12(a+b) cosfrac12(a-b)$$
      Then we add $sin(a+b)$, which is $sin a cos b + cos a sin b$.
      We now have:



      $$2 sinfrac12(a+b) cosfrac12(a-b) + frac12 left(sin(a-b) + sin (a+b)right) + frac12 left( sin(b-a) + sin (a+b)right)$$



      From there, we can't see how to obtain the right-hand side of the equation which is
      $$4 sinfrac12(a+b) cosfrac12a cosfrac12b$$







      trigonometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 27 '18 at 14:41









      Blue

      47.6k870151




      47.6k870151










      asked Dec 27 '18 at 14:31









      Christopher Paggen

      111




      111






















          5 Answers
          5






          active

          oldest

          votes


















          2














          Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
          begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
          Since
          begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
          [see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
          begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
          Hence,
          begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}






          share|cite|improve this answer































            1














            Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$






            share|cite|improve this answer





















            • thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
              – Christopher Paggen
              Dec 27 '18 at 15:04



















            1














            It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
            $$
            sin2A+sin2B+sin2(A+B)
            $$

            The right-hand side screams “sum-to-product”! OK, let's apply the formula
            $$
            sin2A+sin2B=2sin(A+B)cos(A-B)
            $$

            so the left-hand side becomes
            begin{align}
            sin2A+sin2B+sin2(A+B)
            &=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
            &=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
            &=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
            &=4sin(A+B)cos Acos B
            end{align}






            share|cite|improve this answer





























              0














              begin{align}
              sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
              &=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
              end{align}

              Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.






              share|cite|improve this answer































                0














                An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$






                share|cite|improve this answer





















                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053978%2fprove-that-sin-a-sin-b-sinab-4-sin-frac12ab-cos-frac12a-cos%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  2














                  Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
                  begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
                  Since
                  begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
                  [see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
                  begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
                  Hence,
                  begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}






                  share|cite|improve this answer




























                    2














                    Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
                    begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
                    Since
                    begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
                    [see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
                    begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
                    Hence,
                    begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}






                    share|cite|improve this answer


























                      2












                      2








                      2






                      Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
                      begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
                      Since
                      begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
                      [see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
                      begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
                      Hence,
                      begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}






                      share|cite|improve this answer














                      Following Thomas Shelby and Dr. Sonnhard Graubner, I provide you a full proof:
                      begin{align}sin(a)+sin(b)+sin(a+b)&=2cosleft(frac{a-b}{2}right)sinleft(frac{a+b}{2}right)+2sinleft(frac{a+b}{2}right)cosleft(frac{a+b}{2}right)\&=2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]end{align}
                      Since
                      begin{align}cosleft(a-bright)+cosleft(a+bright)=2cos(a)cos(b)end{align}
                      [see: last page of https://services.math.duke.edu/~leili/teaching/uwm/math222s11/problems/quizzes/trig.pdf or search for An elementary proof of two formulas in trigonometry on google] then,
                      begin{align}cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)=2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}
                      Hence,
                      begin{align}2sinleft(frac{a+b}{2}right)left[cosleft(frac{a-b}{2}right)+cosleft(frac{a+b}{2}right)right]=&2sinleft(frac{a+b}{2}right)times 2cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)\=&4sinleft(frac{a+b}{2}right)cosleft(frac{a}{2}right)cosleft(frac{b}{2}right)end{align}







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Dec 27 '18 at 15:23

























                      answered Dec 27 '18 at 15:10









                      Mike

                      1,391221




                      1,391221























                          1














                          Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$






                          share|cite|improve this answer





















                          • thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
                            – Christopher Paggen
                            Dec 27 '18 at 15:04
















                          1














                          Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$






                          share|cite|improve this answer





















                          • thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
                            – Christopher Paggen
                            Dec 27 '18 at 15:04














                          1












                          1








                          1






                          Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$






                          share|cite|improve this answer












                          Use that $$sin(A)+sin(B)=2cosleft(frac{A-B}{2}right)sinleft(frac{A+B}{2}right)$$ and $$sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right)$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 27 '18 at 14:41









                          Dr. Sonnhard Graubner

                          73.3k42865




                          73.3k42865












                          • thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
                            – Christopher Paggen
                            Dec 27 '18 at 15:04


















                          • thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
                            – Christopher Paggen
                            Dec 27 '18 at 15:04
















                          thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
                          – Christopher Paggen
                          Dec 27 '18 at 15:04




                          thank you - we did not have sin(A+B)=2sinleft(frac{A+B}{2}right)cosleft(frac{A+B}{2}right) in the course material, we just had sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
                          – Christopher Paggen
                          Dec 27 '18 at 15:04











                          1














                          It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
                          $$
                          sin2A+sin2B+sin2(A+B)
                          $$

                          The right-hand side screams “sum-to-product”! OK, let's apply the formula
                          $$
                          sin2A+sin2B=2sin(A+B)cos(A-B)
                          $$

                          so the left-hand side becomes
                          begin{align}
                          sin2A+sin2B+sin2(A+B)
                          &=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
                          &=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
                          &=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
                          &=4sin(A+B)cos Acos B
                          end{align}






                          share|cite|improve this answer


























                            1














                            It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
                            $$
                            sin2A+sin2B+sin2(A+B)
                            $$

                            The right-hand side screams “sum-to-product”! OK, let's apply the formula
                            $$
                            sin2A+sin2B=2sin(A+B)cos(A-B)
                            $$

                            so the left-hand side becomes
                            begin{align}
                            sin2A+sin2B+sin2(A+B)
                            &=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
                            &=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
                            &=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
                            &=4sin(A+B)cos Acos B
                            end{align}






                            share|cite|improve this answer
























                              1












                              1








                              1






                              It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
                              $$
                              sin2A+sin2B+sin2(A+B)
                              $$

                              The right-hand side screams “sum-to-product”! OK, let's apply the formula
                              $$
                              sin2A+sin2B=2sin(A+B)cos(A-B)
                              $$

                              so the left-hand side becomes
                              begin{align}
                              sin2A+sin2B+sin2(A+B)
                              &=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
                              &=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
                              &=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
                              &=4sin(A+B)cos Acos B
                              end{align}






                              share|cite|improve this answer












                              It may help setting $A=a/2$ and $B=b/2$, so the left-hand side becomes
                              $$
                              sin2A+sin2B+sin2(A+B)
                              $$

                              The right-hand side screams “sum-to-product”! OK, let's apply the formula
                              $$
                              sin2A+sin2B=2sin(A+B)cos(A-B)
                              $$

                              so the left-hand side becomes
                              begin{align}
                              sin2A+sin2B+sin2(A+B)
                              &=2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)\
                              &=2sin(A+B)bigl(cos(A-B)+cos(A+B)bigr) \
                              &=2sin(A+B)(cos Acos B+sin Asin B+cos Acos B-sin Asin B)\
                              &=4sin(A+B)cos Acos B
                              end{align}







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 27 '18 at 15:55









                              egreg

                              178k1484201




                              178k1484201























                                  0














                                  begin{align}
                                  sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
                                  &=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
                                  end{align}

                                  Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.






                                  share|cite|improve this answer




























                                    0














                                    begin{align}
                                    sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
                                    &=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
                                    end{align}

                                    Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.






                                    share|cite|improve this answer


























                                      0












                                      0








                                      0






                                      begin{align}
                                      sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
                                      &=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
                                      end{align}

                                      Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.






                                      share|cite|improve this answer














                                      begin{align}
                                      sin a + sin b + sin (a+b)&=2 sinleft(frac{a+b}2right) cosleft(frac{a-b}2right)+2 sinleft(frac{a+b}2right) cosleft(frac{a+b}2right)\
                                      &=2 sinleft(frac{a+b}2right)left(cosleft(frac{a-b}2right)+cosleft(frac{a+b}2right)right)
                                      end{align}

                                      Now use the identity $$cos A +cos B=2cos left(frac{A+B}2right)cos left(frac{A-B}2right)$$.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Dec 27 '18 at 14:52

























                                      answered Dec 27 '18 at 14:46









                                      Thomas Shelby

                                      1,657216




                                      1,657216























                                          0














                                          An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$






                                          share|cite|improve this answer


























                                            0














                                            An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$






                                            share|cite|improve this answer
























                                              0












                                              0








                                              0






                                              An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$






                                              share|cite|improve this answer












                                              An alternative strategy uses $1+cos x=2cos^2tfrac{x}{2}$ to obtain $$sin a+sin b+sin (a+b)=2left(sin acos^2tfrac{b}{2}+sin bcos^2tfrac{a}{2}right).$$To finish, use $sin x=2sintfrac{x}{2}costfrac{x}{2}$ to obtain$$sin a+sin b+sin (a+b)=4costfrac{a}{2}costfrac{b}{2}left(sintfrac{a}{2}costfrac{b}{2}+sintfrac{b}{2}costfrac{a}{2}right)=4costfrac{a}{2} costfrac{b}{2}sintfrac{a+b}{2}.$$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Dec 27 '18 at 14:56









                                              J.G.

                                              23k22137




                                              23k22137






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.





                                                  Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                  Please pay close attention to the following guidance:


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053978%2fprove-that-sin-a-sin-b-sinab-4-sin-frac12ab-cos-frac12a-cos%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Human spaceflight

                                                  Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                                                  張江高科駅