The isomorphism between two complete ordered fields is unique












1












$begingroup$



The isomorphism between two complete ordered fields is unique.




Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Let $mathfrak{R}=langle Bbb R,<,+,cdot,0,1 rangle,mathfrak{A}=langle A,prec,oplus,odot,0',1' rangle$ be complete ordered fields where $Bbb R$ is the set of real numbers. Let $mathfrak{B}=langle B,prec,oplus,odot,0',1' rangle$ be the smallest subfield of $mathfrak{A}$ and $mathfrak{Q}=langle Bbb Q,<,+,cdot,0,1 rangle$.



Lemma 1: $mathfrak{R}$ is isomorphic to $mathfrak{A}$.



Lemma 2: $mathfrak{Q}$ is uniquely isomorphic to $mathfrak{B}$.



By Lemma 1, let $Phi:Bbb R to A,Psi:Bbb R to A$ be isomorphisms between $mathfrak{R}$ and $mathfrak{A}$. By Lemma 2, let $f:Bbb Q to B$ be the unique isomorphism between $mathfrak{Q}$ and $mathfrak{B}$.



Let $X subseteq Bbb Q$ be bounded from above and $sup,sup'$ supremums w.r.t $<,prec$ respectively. We next prove that $Phi(sup X) = sup' f[X]$.



$forall xin X: x le sup X implies forall xin X: Phi(x) preccurlyeq Phi(sup X) implies forall xin X: f(x) preccurlyeq Phi(sup X) implies sup' f[X] preccurlyeq Phi(sup X).$




  • Assume the contrary that $sup' f[X] prec Phi(sup X)$. Since $B$ is dense in $A$, there exists $bin B$ such that $sup' f[X] prec b prec Phi(sup X)$. Then there exists $pin Bbb Q$ such that $f(p)=b$. Thus $sup' f[X] prec f(p)=Phi(p) prec Phi(sup X).$


  • We have $Phi(p) prec Phi(sup X) implies p<sup X implies p<p'$ for some $p'in X implies$ $f(p) prec f(p')$ for some $p'in X$ $implies f(p) prec sup' f[X]$. This is a contradiction.



Hence $Phi(sup X)=sup' f[X]$. Similarly, $Psi(sup X)=sup' f[X]$.



Let $X_x={pinBbb Q mid p<x} subseteq Bbb Q$. Since $Bbb Q$ is dense in $Bbb R$, $x=sup X_x$ for all $xinBbb R$. Then $Phi(x)=Phi(sup X_x)=sup' f[X_x]=Psi(sup X_x)=Psi(x)$ for all $xinBbb R$. It follows that $Phi=Psi$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You should use that a complete ordered field has a unique ordering, because an element is nonnegative if and only if it has a square root.
    $endgroup$
    – egreg
    Jan 17 at 0:05










  • $begingroup$
    Hi @egreg, DanielWainfleet has utilized your idea and posted it as an answer below. I am reading his answer. Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 0:10
















1












$begingroup$



The isomorphism between two complete ordered fields is unique.




Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Let $mathfrak{R}=langle Bbb R,<,+,cdot,0,1 rangle,mathfrak{A}=langle A,prec,oplus,odot,0',1' rangle$ be complete ordered fields where $Bbb R$ is the set of real numbers. Let $mathfrak{B}=langle B,prec,oplus,odot,0',1' rangle$ be the smallest subfield of $mathfrak{A}$ and $mathfrak{Q}=langle Bbb Q,<,+,cdot,0,1 rangle$.



Lemma 1: $mathfrak{R}$ is isomorphic to $mathfrak{A}$.



Lemma 2: $mathfrak{Q}$ is uniquely isomorphic to $mathfrak{B}$.



By Lemma 1, let $Phi:Bbb R to A,Psi:Bbb R to A$ be isomorphisms between $mathfrak{R}$ and $mathfrak{A}$. By Lemma 2, let $f:Bbb Q to B$ be the unique isomorphism between $mathfrak{Q}$ and $mathfrak{B}$.



Let $X subseteq Bbb Q$ be bounded from above and $sup,sup'$ supremums w.r.t $<,prec$ respectively. We next prove that $Phi(sup X) = sup' f[X]$.



$forall xin X: x le sup X implies forall xin X: Phi(x) preccurlyeq Phi(sup X) implies forall xin X: f(x) preccurlyeq Phi(sup X) implies sup' f[X] preccurlyeq Phi(sup X).$




  • Assume the contrary that $sup' f[X] prec Phi(sup X)$. Since $B$ is dense in $A$, there exists $bin B$ such that $sup' f[X] prec b prec Phi(sup X)$. Then there exists $pin Bbb Q$ such that $f(p)=b$. Thus $sup' f[X] prec f(p)=Phi(p) prec Phi(sup X).$


  • We have $Phi(p) prec Phi(sup X) implies p<sup X implies p<p'$ for some $p'in X implies$ $f(p) prec f(p')$ for some $p'in X$ $implies f(p) prec sup' f[X]$. This is a contradiction.



Hence $Phi(sup X)=sup' f[X]$. Similarly, $Psi(sup X)=sup' f[X]$.



Let $X_x={pinBbb Q mid p<x} subseteq Bbb Q$. Since $Bbb Q$ is dense in $Bbb R$, $x=sup X_x$ for all $xinBbb R$. Then $Phi(x)=Phi(sup X_x)=sup' f[X_x]=Psi(sup X_x)=Psi(x)$ for all $xinBbb R$. It follows that $Phi=Psi$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You should use that a complete ordered field has a unique ordering, because an element is nonnegative if and only if it has a square root.
    $endgroup$
    – egreg
    Jan 17 at 0:05










  • $begingroup$
    Hi @egreg, DanielWainfleet has utilized your idea and posted it as an answer below. I am reading his answer. Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 0:10














1












1








1


1



$begingroup$



The isomorphism between two complete ordered fields is unique.




Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Let $mathfrak{R}=langle Bbb R,<,+,cdot,0,1 rangle,mathfrak{A}=langle A,prec,oplus,odot,0',1' rangle$ be complete ordered fields where $Bbb R$ is the set of real numbers. Let $mathfrak{B}=langle B,prec,oplus,odot,0',1' rangle$ be the smallest subfield of $mathfrak{A}$ and $mathfrak{Q}=langle Bbb Q,<,+,cdot,0,1 rangle$.



Lemma 1: $mathfrak{R}$ is isomorphic to $mathfrak{A}$.



Lemma 2: $mathfrak{Q}$ is uniquely isomorphic to $mathfrak{B}$.



By Lemma 1, let $Phi:Bbb R to A,Psi:Bbb R to A$ be isomorphisms between $mathfrak{R}$ and $mathfrak{A}$. By Lemma 2, let $f:Bbb Q to B$ be the unique isomorphism between $mathfrak{Q}$ and $mathfrak{B}$.



Let $X subseteq Bbb Q$ be bounded from above and $sup,sup'$ supremums w.r.t $<,prec$ respectively. We next prove that $Phi(sup X) = sup' f[X]$.



$forall xin X: x le sup X implies forall xin X: Phi(x) preccurlyeq Phi(sup X) implies forall xin X: f(x) preccurlyeq Phi(sup X) implies sup' f[X] preccurlyeq Phi(sup X).$




  • Assume the contrary that $sup' f[X] prec Phi(sup X)$. Since $B$ is dense in $A$, there exists $bin B$ such that $sup' f[X] prec b prec Phi(sup X)$. Then there exists $pin Bbb Q$ such that $f(p)=b$. Thus $sup' f[X] prec f(p)=Phi(p) prec Phi(sup X).$


  • We have $Phi(p) prec Phi(sup X) implies p<sup X implies p<p'$ for some $p'in X implies$ $f(p) prec f(p')$ for some $p'in X$ $implies f(p) prec sup' f[X]$. This is a contradiction.



Hence $Phi(sup X)=sup' f[X]$. Similarly, $Psi(sup X)=sup' f[X]$.



Let $X_x={pinBbb Q mid p<x} subseteq Bbb Q$. Since $Bbb Q$ is dense in $Bbb R$, $x=sup X_x$ for all $xinBbb R$. Then $Phi(x)=Phi(sup X_x)=sup' f[X_x]=Psi(sup X_x)=Psi(x)$ for all $xinBbb R$. It follows that $Phi=Psi$.










share|cite|improve this question











$endgroup$





The isomorphism between two complete ordered fields is unique.




Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!





My attempt:



Let $mathfrak{R}=langle Bbb R,<,+,cdot,0,1 rangle,mathfrak{A}=langle A,prec,oplus,odot,0',1' rangle$ be complete ordered fields where $Bbb R$ is the set of real numbers. Let $mathfrak{B}=langle B,prec,oplus,odot,0',1' rangle$ be the smallest subfield of $mathfrak{A}$ and $mathfrak{Q}=langle Bbb Q,<,+,cdot,0,1 rangle$.



Lemma 1: $mathfrak{R}$ is isomorphic to $mathfrak{A}$.



Lemma 2: $mathfrak{Q}$ is uniquely isomorphic to $mathfrak{B}$.



By Lemma 1, let $Phi:Bbb R to A,Psi:Bbb R to A$ be isomorphisms between $mathfrak{R}$ and $mathfrak{A}$. By Lemma 2, let $f:Bbb Q to B$ be the unique isomorphism between $mathfrak{Q}$ and $mathfrak{B}$.



Let $X subseteq Bbb Q$ be bounded from above and $sup,sup'$ supremums w.r.t $<,prec$ respectively. We next prove that $Phi(sup X) = sup' f[X]$.



$forall xin X: x le sup X implies forall xin X: Phi(x) preccurlyeq Phi(sup X) implies forall xin X: f(x) preccurlyeq Phi(sup X) implies sup' f[X] preccurlyeq Phi(sup X).$




  • Assume the contrary that $sup' f[X] prec Phi(sup X)$. Since $B$ is dense in $A$, there exists $bin B$ such that $sup' f[X] prec b prec Phi(sup X)$. Then there exists $pin Bbb Q$ such that $f(p)=b$. Thus $sup' f[X] prec f(p)=Phi(p) prec Phi(sup X).$


  • We have $Phi(p) prec Phi(sup X) implies p<sup X implies p<p'$ for some $p'in X implies$ $f(p) prec f(p')$ for some $p'in X$ $implies f(p) prec sup' f[X]$. This is a contradiction.



Hence $Phi(sup X)=sup' f[X]$. Similarly, $Psi(sup X)=sup' f[X]$.



Let $X_x={pinBbb Q mid p<x} subseteq Bbb Q$. Since $Bbb Q$ is dense in $Bbb R$, $x=sup X_x$ for all $xinBbb R$. Then $Phi(x)=Phi(sup X_x)=sup' f[X_x]=Psi(sup X_x)=Psi(x)$ for all $xinBbb R$. It follows that $Phi=Psi$.







real-analysis proof-verification real-numbers ordered-fields






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 9:27







Le Anh Dung

















asked Jan 16 at 0:42









Le Anh DungLe Anh Dung

1,4461621




1,4461621












  • $begingroup$
    You should use that a complete ordered field has a unique ordering, because an element is nonnegative if and only if it has a square root.
    $endgroup$
    – egreg
    Jan 17 at 0:05










  • $begingroup$
    Hi @egreg, DanielWainfleet has utilized your idea and posted it as an answer below. I am reading his answer. Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 0:10


















  • $begingroup$
    You should use that a complete ordered field has a unique ordering, because an element is nonnegative if and only if it has a square root.
    $endgroup$
    – egreg
    Jan 17 at 0:05










  • $begingroup$
    Hi @egreg, DanielWainfleet has utilized your idea and posted it as an answer below. I am reading his answer. Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 0:10
















$begingroup$
You should use that a complete ordered field has a unique ordering, because an element is nonnegative if and only if it has a square root.
$endgroup$
– egreg
Jan 17 at 0:05




$begingroup$
You should use that a complete ordered field has a unique ordering, because an element is nonnegative if and only if it has a square root.
$endgroup$
– egreg
Jan 17 at 0:05












$begingroup$
Hi @egreg, DanielWainfleet has utilized your idea and posted it as an answer below. I am reading his answer. Have you seen any error in my proof?
$endgroup$
– Le Anh Dung
Jan 17 at 0:10




$begingroup$
Hi @egreg, DanielWainfleet has utilized your idea and posted it as an answer below. I am reading his answer. Have you seen any error in my proof?
$endgroup$
– Le Anh Dung
Jan 17 at 0:10










1 Answer
1






active

oldest

votes


















1












$begingroup$

This is an extended comment on the uniqueness of the isomorphism.



(1a). Let $F, G$ be sub-fields of $Bbb R$ such that $psi:Fto G$ is a field-isomorphism. ($psi$ is not assumed to preserve order.) If $forall xin F,(0le ximplies sqrt xin F) $ then $psi=id_F$ and $G=F.$



Proof: $Bbb Qsubset F$ and $psi|_{Bbb Q}=id_{Bbb Q}$ so for any $xin F$ and any $qin Bbb Q$ we have $$xge qiff psi(x)-q=psi(x)-psi(q)=(psi(sqrt {x-q}))^2ge 0iff$$ $$iff psi(x)ge q$$ so $Bbb Q cap (-infty,x]=Bbb Qcap (-infty,psi(x)],$ so $x=psi(x).$



(1b).In particular, letting $F=Bbb R$ in (1a), the only sub-field of $Bbb R$ that is field-isomorphic to $Bbb R$ is $Bbb R$ itself, and the only field-isomorphism of $Bbb R$ to $Bbb R$ is $id_{Bbb R}.$



(2). If $ B $ is a field and $psi_1, psi_2$ are field-isomorphisms from $Bbb R$ to $B$ then by (1b), $psi_2^{-1}psi_1=id_{Bbb R},$ so $psi_1=psi_2.$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    A proper sub-field of $Bbb R$ can be an ordered field according to an order that is not the usual order $<$ of $Bbb R$. For example ${a+bsqrt 2,:a,bin Bbb Q}.$ For $a,bin Bbb Q$ let $a+bsqrt 2,>^*0iff a-bsqrt 2<0.$
    $endgroup$
    – DanielWainfleet
    Jan 16 at 23:06










  • $begingroup$
    I think you meant $psi$ rather than $f$. Please check if my reasoning is correct: For all $xin F$ and $qinBbb Q$: $psi(x)-q=psi(x)-psi(q)$ [since $psi|_{Bbb Q}=text{id}_{Bbb Q}$] $=psi(x-q)$. Then $x ge q iff x-q ge 0 iff x-q$ $=sqrt {x-q} cdot sqrt {x-q} iff psi(x-q)=psi(sqrt {x-q} cdot sqrt {x-q})=psi(sqrt {x-q})cdot psi(sqrt {x-q})=$ $(psi(sqrt {x-q}))^2 ge 0 iff psi(x)-q=psi(x-q) ge 0$. To sum up, $xge q iff psi(x)-q ge 0$ $iff psi(x)ge q$.[...]
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54










  • $begingroup$
    [...] It follows that ${qinBbb Q mid qle x}={qinBbb Q mid qle psi(x)}$. Hence $sup {qinBbb Q mid qle x}=$ $sup {qinBbb Q mid qle psi(x)}$ and thus $x=psi(x)$. As a result, the isomorphism between two fields is unique.
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54












  • $begingroup$
    Perfectly correct. And $f$ was a typo for $psi$.
    $endgroup$
    – DanielWainfleet
    Jan 17 at 13:58










  • $begingroup$
    Thank you so much for your verification! Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 14:04












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075176%2fthe-isomorphism-between-two-complete-ordered-fields-is-unique%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

This is an extended comment on the uniqueness of the isomorphism.



(1a). Let $F, G$ be sub-fields of $Bbb R$ such that $psi:Fto G$ is a field-isomorphism. ($psi$ is not assumed to preserve order.) If $forall xin F,(0le ximplies sqrt xin F) $ then $psi=id_F$ and $G=F.$



Proof: $Bbb Qsubset F$ and $psi|_{Bbb Q}=id_{Bbb Q}$ so for any $xin F$ and any $qin Bbb Q$ we have $$xge qiff psi(x)-q=psi(x)-psi(q)=(psi(sqrt {x-q}))^2ge 0iff$$ $$iff psi(x)ge q$$ so $Bbb Q cap (-infty,x]=Bbb Qcap (-infty,psi(x)],$ so $x=psi(x).$



(1b).In particular, letting $F=Bbb R$ in (1a), the only sub-field of $Bbb R$ that is field-isomorphic to $Bbb R$ is $Bbb R$ itself, and the only field-isomorphism of $Bbb R$ to $Bbb R$ is $id_{Bbb R}.$



(2). If $ B $ is a field and $psi_1, psi_2$ are field-isomorphisms from $Bbb R$ to $B$ then by (1b), $psi_2^{-1}psi_1=id_{Bbb R},$ so $psi_1=psi_2.$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    A proper sub-field of $Bbb R$ can be an ordered field according to an order that is not the usual order $<$ of $Bbb R$. For example ${a+bsqrt 2,:a,bin Bbb Q}.$ For $a,bin Bbb Q$ let $a+bsqrt 2,>^*0iff a-bsqrt 2<0.$
    $endgroup$
    – DanielWainfleet
    Jan 16 at 23:06










  • $begingroup$
    I think you meant $psi$ rather than $f$. Please check if my reasoning is correct: For all $xin F$ and $qinBbb Q$: $psi(x)-q=psi(x)-psi(q)$ [since $psi|_{Bbb Q}=text{id}_{Bbb Q}$] $=psi(x-q)$. Then $x ge q iff x-q ge 0 iff x-q$ $=sqrt {x-q} cdot sqrt {x-q} iff psi(x-q)=psi(sqrt {x-q} cdot sqrt {x-q})=psi(sqrt {x-q})cdot psi(sqrt {x-q})=$ $(psi(sqrt {x-q}))^2 ge 0 iff psi(x)-q=psi(x-q) ge 0$. To sum up, $xge q iff psi(x)-q ge 0$ $iff psi(x)ge q$.[...]
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54










  • $begingroup$
    [...] It follows that ${qinBbb Q mid qle x}={qinBbb Q mid qle psi(x)}$. Hence $sup {qinBbb Q mid qle x}=$ $sup {qinBbb Q mid qle psi(x)}$ and thus $x=psi(x)$. As a result, the isomorphism between two fields is unique.
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54












  • $begingroup$
    Perfectly correct. And $f$ was a typo for $psi$.
    $endgroup$
    – DanielWainfleet
    Jan 17 at 13:58










  • $begingroup$
    Thank you so much for your verification! Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 14:04
















1












$begingroup$

This is an extended comment on the uniqueness of the isomorphism.



(1a). Let $F, G$ be sub-fields of $Bbb R$ such that $psi:Fto G$ is a field-isomorphism. ($psi$ is not assumed to preserve order.) If $forall xin F,(0le ximplies sqrt xin F) $ then $psi=id_F$ and $G=F.$



Proof: $Bbb Qsubset F$ and $psi|_{Bbb Q}=id_{Bbb Q}$ so for any $xin F$ and any $qin Bbb Q$ we have $$xge qiff psi(x)-q=psi(x)-psi(q)=(psi(sqrt {x-q}))^2ge 0iff$$ $$iff psi(x)ge q$$ so $Bbb Q cap (-infty,x]=Bbb Qcap (-infty,psi(x)],$ so $x=psi(x).$



(1b).In particular, letting $F=Bbb R$ in (1a), the only sub-field of $Bbb R$ that is field-isomorphic to $Bbb R$ is $Bbb R$ itself, and the only field-isomorphism of $Bbb R$ to $Bbb R$ is $id_{Bbb R}.$



(2). If $ B $ is a field and $psi_1, psi_2$ are field-isomorphisms from $Bbb R$ to $B$ then by (1b), $psi_2^{-1}psi_1=id_{Bbb R},$ so $psi_1=psi_2.$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    A proper sub-field of $Bbb R$ can be an ordered field according to an order that is not the usual order $<$ of $Bbb R$. For example ${a+bsqrt 2,:a,bin Bbb Q}.$ For $a,bin Bbb Q$ let $a+bsqrt 2,>^*0iff a-bsqrt 2<0.$
    $endgroup$
    – DanielWainfleet
    Jan 16 at 23:06










  • $begingroup$
    I think you meant $psi$ rather than $f$. Please check if my reasoning is correct: For all $xin F$ and $qinBbb Q$: $psi(x)-q=psi(x)-psi(q)$ [since $psi|_{Bbb Q}=text{id}_{Bbb Q}$] $=psi(x-q)$. Then $x ge q iff x-q ge 0 iff x-q$ $=sqrt {x-q} cdot sqrt {x-q} iff psi(x-q)=psi(sqrt {x-q} cdot sqrt {x-q})=psi(sqrt {x-q})cdot psi(sqrt {x-q})=$ $(psi(sqrt {x-q}))^2 ge 0 iff psi(x)-q=psi(x-q) ge 0$. To sum up, $xge q iff psi(x)-q ge 0$ $iff psi(x)ge q$.[...]
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54










  • $begingroup$
    [...] It follows that ${qinBbb Q mid qle x}={qinBbb Q mid qle psi(x)}$. Hence $sup {qinBbb Q mid qle x}=$ $sup {qinBbb Q mid qle psi(x)}$ and thus $x=psi(x)$. As a result, the isomorphism between two fields is unique.
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54












  • $begingroup$
    Perfectly correct. And $f$ was a typo for $psi$.
    $endgroup$
    – DanielWainfleet
    Jan 17 at 13:58










  • $begingroup$
    Thank you so much for your verification! Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 14:04














1












1








1





$begingroup$

This is an extended comment on the uniqueness of the isomorphism.



(1a). Let $F, G$ be sub-fields of $Bbb R$ such that $psi:Fto G$ is a field-isomorphism. ($psi$ is not assumed to preserve order.) If $forall xin F,(0le ximplies sqrt xin F) $ then $psi=id_F$ and $G=F.$



Proof: $Bbb Qsubset F$ and $psi|_{Bbb Q}=id_{Bbb Q}$ so for any $xin F$ and any $qin Bbb Q$ we have $$xge qiff psi(x)-q=psi(x)-psi(q)=(psi(sqrt {x-q}))^2ge 0iff$$ $$iff psi(x)ge q$$ so $Bbb Q cap (-infty,x]=Bbb Qcap (-infty,psi(x)],$ so $x=psi(x).$



(1b).In particular, letting $F=Bbb R$ in (1a), the only sub-field of $Bbb R$ that is field-isomorphic to $Bbb R$ is $Bbb R$ itself, and the only field-isomorphism of $Bbb R$ to $Bbb R$ is $id_{Bbb R}.$



(2). If $ B $ is a field and $psi_1, psi_2$ are field-isomorphisms from $Bbb R$ to $B$ then by (1b), $psi_2^{-1}psi_1=id_{Bbb R},$ so $psi_1=psi_2.$






share|cite|improve this answer











$endgroup$



This is an extended comment on the uniqueness of the isomorphism.



(1a). Let $F, G$ be sub-fields of $Bbb R$ such that $psi:Fto G$ is a field-isomorphism. ($psi$ is not assumed to preserve order.) If $forall xin F,(0le ximplies sqrt xin F) $ then $psi=id_F$ and $G=F.$



Proof: $Bbb Qsubset F$ and $psi|_{Bbb Q}=id_{Bbb Q}$ so for any $xin F$ and any $qin Bbb Q$ we have $$xge qiff psi(x)-q=psi(x)-psi(q)=(psi(sqrt {x-q}))^2ge 0iff$$ $$iff psi(x)ge q$$ so $Bbb Q cap (-infty,x]=Bbb Qcap (-infty,psi(x)],$ so $x=psi(x).$



(1b).In particular, letting $F=Bbb R$ in (1a), the only sub-field of $Bbb R$ that is field-isomorphic to $Bbb R$ is $Bbb R$ itself, and the only field-isomorphism of $Bbb R$ to $Bbb R$ is $id_{Bbb R}.$



(2). If $ B $ is a field and $psi_1, psi_2$ are field-isomorphisms from $Bbb R$ to $B$ then by (1b), $psi_2^{-1}psi_1=id_{Bbb R},$ so $psi_1=psi_2.$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 17 at 14:00

























answered Jan 16 at 22:51









DanielWainfleetDanielWainfleet

35.7k31648




35.7k31648












  • $begingroup$
    A proper sub-field of $Bbb R$ can be an ordered field according to an order that is not the usual order $<$ of $Bbb R$. For example ${a+bsqrt 2,:a,bin Bbb Q}.$ For $a,bin Bbb Q$ let $a+bsqrt 2,>^*0iff a-bsqrt 2<0.$
    $endgroup$
    – DanielWainfleet
    Jan 16 at 23:06










  • $begingroup$
    I think you meant $psi$ rather than $f$. Please check if my reasoning is correct: For all $xin F$ and $qinBbb Q$: $psi(x)-q=psi(x)-psi(q)$ [since $psi|_{Bbb Q}=text{id}_{Bbb Q}$] $=psi(x-q)$. Then $x ge q iff x-q ge 0 iff x-q$ $=sqrt {x-q} cdot sqrt {x-q} iff psi(x-q)=psi(sqrt {x-q} cdot sqrt {x-q})=psi(sqrt {x-q})cdot psi(sqrt {x-q})=$ $(psi(sqrt {x-q}))^2 ge 0 iff psi(x)-q=psi(x-q) ge 0$. To sum up, $xge q iff psi(x)-q ge 0$ $iff psi(x)ge q$.[...]
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54










  • $begingroup$
    [...] It follows that ${qinBbb Q mid qle x}={qinBbb Q mid qle psi(x)}$. Hence $sup {qinBbb Q mid qle x}=$ $sup {qinBbb Q mid qle psi(x)}$ and thus $x=psi(x)$. As a result, the isomorphism between two fields is unique.
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54












  • $begingroup$
    Perfectly correct. And $f$ was a typo for $psi$.
    $endgroup$
    – DanielWainfleet
    Jan 17 at 13:58










  • $begingroup$
    Thank you so much for your verification! Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 14:04


















  • $begingroup$
    A proper sub-field of $Bbb R$ can be an ordered field according to an order that is not the usual order $<$ of $Bbb R$. For example ${a+bsqrt 2,:a,bin Bbb Q}.$ For $a,bin Bbb Q$ let $a+bsqrt 2,>^*0iff a-bsqrt 2<0.$
    $endgroup$
    – DanielWainfleet
    Jan 16 at 23:06










  • $begingroup$
    I think you meant $psi$ rather than $f$. Please check if my reasoning is correct: For all $xin F$ and $qinBbb Q$: $psi(x)-q=psi(x)-psi(q)$ [since $psi|_{Bbb Q}=text{id}_{Bbb Q}$] $=psi(x-q)$. Then $x ge q iff x-q ge 0 iff x-q$ $=sqrt {x-q} cdot sqrt {x-q} iff psi(x-q)=psi(sqrt {x-q} cdot sqrt {x-q})=psi(sqrt {x-q})cdot psi(sqrt {x-q})=$ $(psi(sqrt {x-q}))^2 ge 0 iff psi(x)-q=psi(x-q) ge 0$. To sum up, $xge q iff psi(x)-q ge 0$ $iff psi(x)ge q$.[...]
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54










  • $begingroup$
    [...] It follows that ${qinBbb Q mid qle x}={qinBbb Q mid qle psi(x)}$. Hence $sup {qinBbb Q mid qle x}=$ $sup {qinBbb Q mid qle psi(x)}$ and thus $x=psi(x)$. As a result, the isomorphism between two fields is unique.
    $endgroup$
    – Le Anh Dung
    Jan 17 at 1:54












  • $begingroup$
    Perfectly correct. And $f$ was a typo for $psi$.
    $endgroup$
    – DanielWainfleet
    Jan 17 at 13:58










  • $begingroup$
    Thank you so much for your verification! Have you seen any error in my proof?
    $endgroup$
    – Le Anh Dung
    Jan 17 at 14:04
















$begingroup$
A proper sub-field of $Bbb R$ can be an ordered field according to an order that is not the usual order $<$ of $Bbb R$. For example ${a+bsqrt 2,:a,bin Bbb Q}.$ For $a,bin Bbb Q$ let $a+bsqrt 2,>^*0iff a-bsqrt 2<0.$
$endgroup$
– DanielWainfleet
Jan 16 at 23:06




$begingroup$
A proper sub-field of $Bbb R$ can be an ordered field according to an order that is not the usual order $<$ of $Bbb R$. For example ${a+bsqrt 2,:a,bin Bbb Q}.$ For $a,bin Bbb Q$ let $a+bsqrt 2,>^*0iff a-bsqrt 2<0.$
$endgroup$
– DanielWainfleet
Jan 16 at 23:06












$begingroup$
I think you meant $psi$ rather than $f$. Please check if my reasoning is correct: For all $xin F$ and $qinBbb Q$: $psi(x)-q=psi(x)-psi(q)$ [since $psi|_{Bbb Q}=text{id}_{Bbb Q}$] $=psi(x-q)$. Then $x ge q iff x-q ge 0 iff x-q$ $=sqrt {x-q} cdot sqrt {x-q} iff psi(x-q)=psi(sqrt {x-q} cdot sqrt {x-q})=psi(sqrt {x-q})cdot psi(sqrt {x-q})=$ $(psi(sqrt {x-q}))^2 ge 0 iff psi(x)-q=psi(x-q) ge 0$. To sum up, $xge q iff psi(x)-q ge 0$ $iff psi(x)ge q$.[...]
$endgroup$
– Le Anh Dung
Jan 17 at 1:54




$begingroup$
I think you meant $psi$ rather than $f$. Please check if my reasoning is correct: For all $xin F$ and $qinBbb Q$: $psi(x)-q=psi(x)-psi(q)$ [since $psi|_{Bbb Q}=text{id}_{Bbb Q}$] $=psi(x-q)$. Then $x ge q iff x-q ge 0 iff x-q$ $=sqrt {x-q} cdot sqrt {x-q} iff psi(x-q)=psi(sqrt {x-q} cdot sqrt {x-q})=psi(sqrt {x-q})cdot psi(sqrt {x-q})=$ $(psi(sqrt {x-q}))^2 ge 0 iff psi(x)-q=psi(x-q) ge 0$. To sum up, $xge q iff psi(x)-q ge 0$ $iff psi(x)ge q$.[...]
$endgroup$
– Le Anh Dung
Jan 17 at 1:54












$begingroup$
[...] It follows that ${qinBbb Q mid qle x}={qinBbb Q mid qle psi(x)}$. Hence $sup {qinBbb Q mid qle x}=$ $sup {qinBbb Q mid qle psi(x)}$ and thus $x=psi(x)$. As a result, the isomorphism between two fields is unique.
$endgroup$
– Le Anh Dung
Jan 17 at 1:54






$begingroup$
[...] It follows that ${qinBbb Q mid qle x}={qinBbb Q mid qle psi(x)}$. Hence $sup {qinBbb Q mid qle x}=$ $sup {qinBbb Q mid qle psi(x)}$ and thus $x=psi(x)$. As a result, the isomorphism between two fields is unique.
$endgroup$
– Le Anh Dung
Jan 17 at 1:54














$begingroup$
Perfectly correct. And $f$ was a typo for $psi$.
$endgroup$
– DanielWainfleet
Jan 17 at 13:58




$begingroup$
Perfectly correct. And $f$ was a typo for $psi$.
$endgroup$
– DanielWainfleet
Jan 17 at 13:58












$begingroup$
Thank you so much for your verification! Have you seen any error in my proof?
$endgroup$
– Le Anh Dung
Jan 17 at 14:04




$begingroup$
Thank you so much for your verification! Have you seen any error in my proof?
$endgroup$
– Le Anh Dung
Jan 17 at 14:04


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075176%2fthe-isomorphism-between-two-complete-ordered-fields-is-unique%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg