Rewrite a system of linear equations












3












$begingroup$


Fix $r$ and $dequiv r+binom{r}{2}$ and consider $d$ real numbers $b_1,b_2,..., b_d$.



I have the following system of linear equations:
$$
begin{cases}
text{$(diamond)$ Differences between the elements ${b_1,b_h}$ for $h=2,...,r$ $hspace{1cm}$ ($r-1$ elements)}\
b_{r+1}=b_1-b_2\
b_{r+2}=b_1-b_3\
...\
b_{2r-1}=b_1-b_r\
-------\
text{$(diamond)$ Differences between the elements ${b_2,b_h}$ for $h=3,...,r$ $hspace{1cm}$ ($r-2$ elements)}\
b_{2r}=b_2-b_3\
...\
b_{3r-3}=b_2-b_r\
-------\
text{$(diamond)$ Etc. }\
....\
-------\
text{$(diamond)$ Differences between the elements ${b_{r-1},b_h}$ for $h=r$ $hspace{1cm}$ ($1$ element)} \
b_d=b_{r-1}-b_r
end{cases}
$$



Question: For any $r$, I want to re-write in an EQUIVALENT way such that it




  • has only relations with the $+$ sign on the RHS of each equation


  • has only 1 variable on the LHS


  • has all the variables on the LHS different between each other


  • has the least possible amount of equations



I'm unable to find a generic expression. Below I report my attempts which should also clarify what I'm trying to do.





My attempts:
For $r=2$, the original system is
$$
begin{cases}
b_3=b_1-b_2
end{cases}
$$

which simply can be written as
$$
begin{cases}
b_1=b_2+b_3
end{cases}
$$

which satisfies my requirements.





For $r=3$, the original system is
$$
begin{cases}
b_4=b_1-b_2\
b_5=b_1-b_3\
b_6=b_2-b_3\
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_3+b_6+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_2=b_3+b_6\
b_5=b_6+b_4\
end{cases}
$$

which satisfies my requirements.





For $r=4$, the original system is
$$
begin{cases}
b_5=b_1-b_2\
b_6=b_1-b_3\
b_7=b_1-b_4\
b_8=b_2-b_3\
b_9=b_2-b_4\
b_{10}=b_3-b_4
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_3+b_6\
b_1=b_4+b_7\
b_2=b_3+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_4+b_{10}+b_6\
b_1=b_4+b_7\
b_2=b_4+b_{10}+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_2=b_3+b_8\
b_3=b_4+b_{10}\
b_7=b_{10}+b_6\
b_9=b_{10}+b_8\
end{cases}
$$

which satisfies my requirements. In principle, as I keep increasing $r$, I should be able to find some path, but I don't see anything!










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Fix $r$ and $dequiv r+binom{r}{2}$ and consider $d$ real numbers $b_1,b_2,..., b_d$.



    I have the following system of linear equations:
    $$
    begin{cases}
    text{$(diamond)$ Differences between the elements ${b_1,b_h}$ for $h=2,...,r$ $hspace{1cm}$ ($r-1$ elements)}\
    b_{r+1}=b_1-b_2\
    b_{r+2}=b_1-b_3\
    ...\
    b_{2r-1}=b_1-b_r\
    -------\
    text{$(diamond)$ Differences between the elements ${b_2,b_h}$ for $h=3,...,r$ $hspace{1cm}$ ($r-2$ elements)}\
    b_{2r}=b_2-b_3\
    ...\
    b_{3r-3}=b_2-b_r\
    -------\
    text{$(diamond)$ Etc. }\
    ....\
    -------\
    text{$(diamond)$ Differences between the elements ${b_{r-1},b_h}$ for $h=r$ $hspace{1cm}$ ($1$ element)} \
    b_d=b_{r-1}-b_r
    end{cases}
    $$



    Question: For any $r$, I want to re-write in an EQUIVALENT way such that it




    • has only relations with the $+$ sign on the RHS of each equation


    • has only 1 variable on the LHS


    • has all the variables on the LHS different between each other


    • has the least possible amount of equations



    I'm unable to find a generic expression. Below I report my attempts which should also clarify what I'm trying to do.





    My attempts:
    For $r=2$, the original system is
    $$
    begin{cases}
    b_3=b_1-b_2
    end{cases}
    $$

    which simply can be written as
    $$
    begin{cases}
    b_1=b_2+b_3
    end{cases}
    $$

    which satisfies my requirements.





    For $r=3$, the original system is
    $$
    begin{cases}
    b_4=b_1-b_2\
    b_5=b_1-b_3\
    b_6=b_2-b_3\
    end{cases} Leftrightarrow begin{cases}
    b_1=b_2+b_4\
    b_1=b_3+b_5\
    b_2=b_3+b_6
    end{cases} Leftrightarrow begin{cases}
    b_1=b_3+b_6+b_4\
    b_1=b_3+b_5\
    b_2=b_3+b_6
    end{cases} Leftrightarrow begin{cases}
    b_1=b_2+b_4\
    b_2=b_3+b_6\
    b_5=b_6+b_4\
    end{cases}
    $$

    which satisfies my requirements.





    For $r=4$, the original system is
    $$
    begin{cases}
    b_5=b_1-b_2\
    b_6=b_1-b_3\
    b_7=b_1-b_4\
    b_8=b_2-b_3\
    b_9=b_2-b_4\
    b_{10}=b_3-b_4
    end{cases} Leftrightarrow begin{cases}
    b_1=b_2+b_5\
    b_1=b_3+b_6\
    b_1=b_4+b_7\
    b_2=b_3+b_8\
    b_2=b_4+b_9\
    b_3=b_4+b_{10}
    end{cases}Leftrightarrow begin{cases}
    b_1=b_2+b_5\
    b_1=b_4+b_{10}+b_6\
    b_1=b_4+b_7\
    b_2=b_4+b_{10}+b_8\
    b_2=b_4+b_9\
    b_3=b_4+b_{10}
    end{cases}Leftrightarrow begin{cases}
    b_1=b_2+b_5\
    b_2=b_3+b_8\
    b_3=b_4+b_{10}\
    b_7=b_{10}+b_6\
    b_9=b_{10}+b_8\
    end{cases}
    $$

    which satisfies my requirements. In principle, as I keep increasing $r$, I should be able to find some path, but I don't see anything!










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$


      Fix $r$ and $dequiv r+binom{r}{2}$ and consider $d$ real numbers $b_1,b_2,..., b_d$.



      I have the following system of linear equations:
      $$
      begin{cases}
      text{$(diamond)$ Differences between the elements ${b_1,b_h}$ for $h=2,...,r$ $hspace{1cm}$ ($r-1$ elements)}\
      b_{r+1}=b_1-b_2\
      b_{r+2}=b_1-b_3\
      ...\
      b_{2r-1}=b_1-b_r\
      -------\
      text{$(diamond)$ Differences between the elements ${b_2,b_h}$ for $h=3,...,r$ $hspace{1cm}$ ($r-2$ elements)}\
      b_{2r}=b_2-b_3\
      ...\
      b_{3r-3}=b_2-b_r\
      -------\
      text{$(diamond)$ Etc. }\
      ....\
      -------\
      text{$(diamond)$ Differences between the elements ${b_{r-1},b_h}$ for $h=r$ $hspace{1cm}$ ($1$ element)} \
      b_d=b_{r-1}-b_r
      end{cases}
      $$



      Question: For any $r$, I want to re-write in an EQUIVALENT way such that it




      • has only relations with the $+$ sign on the RHS of each equation


      • has only 1 variable on the LHS


      • has all the variables on the LHS different between each other


      • has the least possible amount of equations



      I'm unable to find a generic expression. Below I report my attempts which should also clarify what I'm trying to do.





      My attempts:
      For $r=2$, the original system is
      $$
      begin{cases}
      b_3=b_1-b_2
      end{cases}
      $$

      which simply can be written as
      $$
      begin{cases}
      b_1=b_2+b_3
      end{cases}
      $$

      which satisfies my requirements.





      For $r=3$, the original system is
      $$
      begin{cases}
      b_4=b_1-b_2\
      b_5=b_1-b_3\
      b_6=b_2-b_3\
      end{cases} Leftrightarrow begin{cases}
      b_1=b_2+b_4\
      b_1=b_3+b_5\
      b_2=b_3+b_6
      end{cases} Leftrightarrow begin{cases}
      b_1=b_3+b_6+b_4\
      b_1=b_3+b_5\
      b_2=b_3+b_6
      end{cases} Leftrightarrow begin{cases}
      b_1=b_2+b_4\
      b_2=b_3+b_6\
      b_5=b_6+b_4\
      end{cases}
      $$

      which satisfies my requirements.





      For $r=4$, the original system is
      $$
      begin{cases}
      b_5=b_1-b_2\
      b_6=b_1-b_3\
      b_7=b_1-b_4\
      b_8=b_2-b_3\
      b_9=b_2-b_4\
      b_{10}=b_3-b_4
      end{cases} Leftrightarrow begin{cases}
      b_1=b_2+b_5\
      b_1=b_3+b_6\
      b_1=b_4+b_7\
      b_2=b_3+b_8\
      b_2=b_4+b_9\
      b_3=b_4+b_{10}
      end{cases}Leftrightarrow begin{cases}
      b_1=b_2+b_5\
      b_1=b_4+b_{10}+b_6\
      b_1=b_4+b_7\
      b_2=b_4+b_{10}+b_8\
      b_2=b_4+b_9\
      b_3=b_4+b_{10}
      end{cases}Leftrightarrow begin{cases}
      b_1=b_2+b_5\
      b_2=b_3+b_8\
      b_3=b_4+b_{10}\
      b_7=b_{10}+b_6\
      b_9=b_{10}+b_8\
      end{cases}
      $$

      which satisfies my requirements. In principle, as I keep increasing $r$, I should be able to find some path, but I don't see anything!










      share|cite|improve this question











      $endgroup$




      Fix $r$ and $dequiv r+binom{r}{2}$ and consider $d$ real numbers $b_1,b_2,..., b_d$.



      I have the following system of linear equations:
      $$
      begin{cases}
      text{$(diamond)$ Differences between the elements ${b_1,b_h}$ for $h=2,...,r$ $hspace{1cm}$ ($r-1$ elements)}\
      b_{r+1}=b_1-b_2\
      b_{r+2}=b_1-b_3\
      ...\
      b_{2r-1}=b_1-b_r\
      -------\
      text{$(diamond)$ Differences between the elements ${b_2,b_h}$ for $h=3,...,r$ $hspace{1cm}$ ($r-2$ elements)}\
      b_{2r}=b_2-b_3\
      ...\
      b_{3r-3}=b_2-b_r\
      -------\
      text{$(diamond)$ Etc. }\
      ....\
      -------\
      text{$(diamond)$ Differences between the elements ${b_{r-1},b_h}$ for $h=r$ $hspace{1cm}$ ($1$ element)} \
      b_d=b_{r-1}-b_r
      end{cases}
      $$



      Question: For any $r$, I want to re-write in an EQUIVALENT way such that it




      • has only relations with the $+$ sign on the RHS of each equation


      • has only 1 variable on the LHS


      • has all the variables on the LHS different between each other


      • has the least possible amount of equations



      I'm unable to find a generic expression. Below I report my attempts which should also clarify what I'm trying to do.





      My attempts:
      For $r=2$, the original system is
      $$
      begin{cases}
      b_3=b_1-b_2
      end{cases}
      $$

      which simply can be written as
      $$
      begin{cases}
      b_1=b_2+b_3
      end{cases}
      $$

      which satisfies my requirements.





      For $r=3$, the original system is
      $$
      begin{cases}
      b_4=b_1-b_2\
      b_5=b_1-b_3\
      b_6=b_2-b_3\
      end{cases} Leftrightarrow begin{cases}
      b_1=b_2+b_4\
      b_1=b_3+b_5\
      b_2=b_3+b_6
      end{cases} Leftrightarrow begin{cases}
      b_1=b_3+b_6+b_4\
      b_1=b_3+b_5\
      b_2=b_3+b_6
      end{cases} Leftrightarrow begin{cases}
      b_1=b_2+b_4\
      b_2=b_3+b_6\
      b_5=b_6+b_4\
      end{cases}
      $$

      which satisfies my requirements.





      For $r=4$, the original system is
      $$
      begin{cases}
      b_5=b_1-b_2\
      b_6=b_1-b_3\
      b_7=b_1-b_4\
      b_8=b_2-b_3\
      b_9=b_2-b_4\
      b_{10}=b_3-b_4
      end{cases} Leftrightarrow begin{cases}
      b_1=b_2+b_5\
      b_1=b_3+b_6\
      b_1=b_4+b_7\
      b_2=b_3+b_8\
      b_2=b_4+b_9\
      b_3=b_4+b_{10}
      end{cases}Leftrightarrow begin{cases}
      b_1=b_2+b_5\
      b_1=b_4+b_{10}+b_6\
      b_1=b_4+b_7\
      b_2=b_4+b_{10}+b_8\
      b_2=b_4+b_9\
      b_3=b_4+b_{10}
      end{cases}Leftrightarrow begin{cases}
      b_1=b_2+b_5\
      b_2=b_3+b_8\
      b_3=b_4+b_{10}\
      b_7=b_{10}+b_6\
      b_9=b_{10}+b_8\
      end{cases}
      $$

      which satisfies my requirements. In principle, as I keep increasing $r$, I should be able to find some path, but I don't see anything!







      linear-algebra combinatorics linear-transformations systems-of-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 17 at 16:14







      STF

















      asked Jan 16 at 17:01









      STFSTF

      461422




      461422






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075984%2frewrite-a-system-of-linear-equations%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075984%2frewrite-a-system-of-linear-equations%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Human spaceflight

          Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

          張江高科駅