Rewrite a system of linear equations
$begingroup$
Fix $r$ and $dequiv r+binom{r}{2}$ and consider $d$ real numbers $b_1,b_2,..., b_d$.
I have the following system of linear equations:
$$
begin{cases}
text{$(diamond)$ Differences between the elements ${b_1,b_h}$ for $h=2,...,r$ $hspace{1cm}$ ($r-1$ elements)}\
b_{r+1}=b_1-b_2\
b_{r+2}=b_1-b_3\
...\
b_{2r-1}=b_1-b_r\
-------\
text{$(diamond)$ Differences between the elements ${b_2,b_h}$ for $h=3,...,r$ $hspace{1cm}$ ($r-2$ elements)}\
b_{2r}=b_2-b_3\
...\
b_{3r-3}=b_2-b_r\
-------\
text{$(diamond)$ Etc. }\
....\
-------\
text{$(diamond)$ Differences between the elements ${b_{r-1},b_h}$ for $h=r$ $hspace{1cm}$ ($1$ element)} \
b_d=b_{r-1}-b_r
end{cases}
$$
Question: For any $r$, I want to re-write in an EQUIVALENT way such that it
has only relations with the $+$ sign on the RHS of each equation
has only 1 variable on the LHS
has all the variables on the LHS different between each other
has the least possible amount of equations
I'm unable to find a generic expression. Below I report my attempts which should also clarify what I'm trying to do.
My attempts:
For $r=2$, the original system is
$$
begin{cases}
b_3=b_1-b_2
end{cases}
$$
which simply can be written as
$$
begin{cases}
b_1=b_2+b_3
end{cases}
$$
which satisfies my requirements.
For $r=3$, the original system is
$$
begin{cases}
b_4=b_1-b_2\
b_5=b_1-b_3\
b_6=b_2-b_3\
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_3+b_6+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_2=b_3+b_6\
b_5=b_6+b_4\
end{cases}
$$
which satisfies my requirements.
For $r=4$, the original system is
$$
begin{cases}
b_5=b_1-b_2\
b_6=b_1-b_3\
b_7=b_1-b_4\
b_8=b_2-b_3\
b_9=b_2-b_4\
b_{10}=b_3-b_4
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_3+b_6\
b_1=b_4+b_7\
b_2=b_3+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_4+b_{10}+b_6\
b_1=b_4+b_7\
b_2=b_4+b_{10}+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_2=b_3+b_8\
b_3=b_4+b_{10}\
b_7=b_{10}+b_6\
b_9=b_{10}+b_8\
end{cases}
$$
which satisfies my requirements. In principle, as I keep increasing $r$, I should be able to find some path, but I don't see anything!
linear-algebra combinatorics linear-transformations systems-of-equations
$endgroup$
add a comment |
$begingroup$
Fix $r$ and $dequiv r+binom{r}{2}$ and consider $d$ real numbers $b_1,b_2,..., b_d$.
I have the following system of linear equations:
$$
begin{cases}
text{$(diamond)$ Differences between the elements ${b_1,b_h}$ for $h=2,...,r$ $hspace{1cm}$ ($r-1$ elements)}\
b_{r+1}=b_1-b_2\
b_{r+2}=b_1-b_3\
...\
b_{2r-1}=b_1-b_r\
-------\
text{$(diamond)$ Differences between the elements ${b_2,b_h}$ for $h=3,...,r$ $hspace{1cm}$ ($r-2$ elements)}\
b_{2r}=b_2-b_3\
...\
b_{3r-3}=b_2-b_r\
-------\
text{$(diamond)$ Etc. }\
....\
-------\
text{$(diamond)$ Differences between the elements ${b_{r-1},b_h}$ for $h=r$ $hspace{1cm}$ ($1$ element)} \
b_d=b_{r-1}-b_r
end{cases}
$$
Question: For any $r$, I want to re-write in an EQUIVALENT way such that it
has only relations with the $+$ sign on the RHS of each equation
has only 1 variable on the LHS
has all the variables on the LHS different between each other
has the least possible amount of equations
I'm unable to find a generic expression. Below I report my attempts which should also clarify what I'm trying to do.
My attempts:
For $r=2$, the original system is
$$
begin{cases}
b_3=b_1-b_2
end{cases}
$$
which simply can be written as
$$
begin{cases}
b_1=b_2+b_3
end{cases}
$$
which satisfies my requirements.
For $r=3$, the original system is
$$
begin{cases}
b_4=b_1-b_2\
b_5=b_1-b_3\
b_6=b_2-b_3\
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_3+b_6+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_2=b_3+b_6\
b_5=b_6+b_4\
end{cases}
$$
which satisfies my requirements.
For $r=4$, the original system is
$$
begin{cases}
b_5=b_1-b_2\
b_6=b_1-b_3\
b_7=b_1-b_4\
b_8=b_2-b_3\
b_9=b_2-b_4\
b_{10}=b_3-b_4
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_3+b_6\
b_1=b_4+b_7\
b_2=b_3+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_4+b_{10}+b_6\
b_1=b_4+b_7\
b_2=b_4+b_{10}+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_2=b_3+b_8\
b_3=b_4+b_{10}\
b_7=b_{10}+b_6\
b_9=b_{10}+b_8\
end{cases}
$$
which satisfies my requirements. In principle, as I keep increasing $r$, I should be able to find some path, but I don't see anything!
linear-algebra combinatorics linear-transformations systems-of-equations
$endgroup$
add a comment |
$begingroup$
Fix $r$ and $dequiv r+binom{r}{2}$ and consider $d$ real numbers $b_1,b_2,..., b_d$.
I have the following system of linear equations:
$$
begin{cases}
text{$(diamond)$ Differences between the elements ${b_1,b_h}$ for $h=2,...,r$ $hspace{1cm}$ ($r-1$ elements)}\
b_{r+1}=b_1-b_2\
b_{r+2}=b_1-b_3\
...\
b_{2r-1}=b_1-b_r\
-------\
text{$(diamond)$ Differences between the elements ${b_2,b_h}$ for $h=3,...,r$ $hspace{1cm}$ ($r-2$ elements)}\
b_{2r}=b_2-b_3\
...\
b_{3r-3}=b_2-b_r\
-------\
text{$(diamond)$ Etc. }\
....\
-------\
text{$(diamond)$ Differences between the elements ${b_{r-1},b_h}$ for $h=r$ $hspace{1cm}$ ($1$ element)} \
b_d=b_{r-1}-b_r
end{cases}
$$
Question: For any $r$, I want to re-write in an EQUIVALENT way such that it
has only relations with the $+$ sign on the RHS of each equation
has only 1 variable on the LHS
has all the variables on the LHS different between each other
has the least possible amount of equations
I'm unable to find a generic expression. Below I report my attempts which should also clarify what I'm trying to do.
My attempts:
For $r=2$, the original system is
$$
begin{cases}
b_3=b_1-b_2
end{cases}
$$
which simply can be written as
$$
begin{cases}
b_1=b_2+b_3
end{cases}
$$
which satisfies my requirements.
For $r=3$, the original system is
$$
begin{cases}
b_4=b_1-b_2\
b_5=b_1-b_3\
b_6=b_2-b_3\
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_3+b_6+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_2=b_3+b_6\
b_5=b_6+b_4\
end{cases}
$$
which satisfies my requirements.
For $r=4$, the original system is
$$
begin{cases}
b_5=b_1-b_2\
b_6=b_1-b_3\
b_7=b_1-b_4\
b_8=b_2-b_3\
b_9=b_2-b_4\
b_{10}=b_3-b_4
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_3+b_6\
b_1=b_4+b_7\
b_2=b_3+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_4+b_{10}+b_6\
b_1=b_4+b_7\
b_2=b_4+b_{10}+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_2=b_3+b_8\
b_3=b_4+b_{10}\
b_7=b_{10}+b_6\
b_9=b_{10}+b_8\
end{cases}
$$
which satisfies my requirements. In principle, as I keep increasing $r$, I should be able to find some path, but I don't see anything!
linear-algebra combinatorics linear-transformations systems-of-equations
$endgroup$
Fix $r$ and $dequiv r+binom{r}{2}$ and consider $d$ real numbers $b_1,b_2,..., b_d$.
I have the following system of linear equations:
$$
begin{cases}
text{$(diamond)$ Differences between the elements ${b_1,b_h}$ for $h=2,...,r$ $hspace{1cm}$ ($r-1$ elements)}\
b_{r+1}=b_1-b_2\
b_{r+2}=b_1-b_3\
...\
b_{2r-1}=b_1-b_r\
-------\
text{$(diamond)$ Differences between the elements ${b_2,b_h}$ for $h=3,...,r$ $hspace{1cm}$ ($r-2$ elements)}\
b_{2r}=b_2-b_3\
...\
b_{3r-3}=b_2-b_r\
-------\
text{$(diamond)$ Etc. }\
....\
-------\
text{$(diamond)$ Differences between the elements ${b_{r-1},b_h}$ for $h=r$ $hspace{1cm}$ ($1$ element)} \
b_d=b_{r-1}-b_r
end{cases}
$$
Question: For any $r$, I want to re-write in an EQUIVALENT way such that it
has only relations with the $+$ sign on the RHS of each equation
has only 1 variable on the LHS
has all the variables on the LHS different between each other
has the least possible amount of equations
I'm unable to find a generic expression. Below I report my attempts which should also clarify what I'm trying to do.
My attempts:
For $r=2$, the original system is
$$
begin{cases}
b_3=b_1-b_2
end{cases}
$$
which simply can be written as
$$
begin{cases}
b_1=b_2+b_3
end{cases}
$$
which satisfies my requirements.
For $r=3$, the original system is
$$
begin{cases}
b_4=b_1-b_2\
b_5=b_1-b_3\
b_6=b_2-b_3\
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_3+b_6+b_4\
b_1=b_3+b_5\
b_2=b_3+b_6
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_4\
b_2=b_3+b_6\
b_5=b_6+b_4\
end{cases}
$$
which satisfies my requirements.
For $r=4$, the original system is
$$
begin{cases}
b_5=b_1-b_2\
b_6=b_1-b_3\
b_7=b_1-b_4\
b_8=b_2-b_3\
b_9=b_2-b_4\
b_{10}=b_3-b_4
end{cases} Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_3+b_6\
b_1=b_4+b_7\
b_2=b_3+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_1=b_4+b_{10}+b_6\
b_1=b_4+b_7\
b_2=b_4+b_{10}+b_8\
b_2=b_4+b_9\
b_3=b_4+b_{10}
end{cases}Leftrightarrow begin{cases}
b_1=b_2+b_5\
b_2=b_3+b_8\
b_3=b_4+b_{10}\
b_7=b_{10}+b_6\
b_9=b_{10}+b_8\
end{cases}
$$
which satisfies my requirements. In principle, as I keep increasing $r$, I should be able to find some path, but I don't see anything!
linear-algebra combinatorics linear-transformations systems-of-equations
linear-algebra combinatorics linear-transformations systems-of-equations
edited Jan 17 at 16:14
STF
asked Jan 16 at 17:01
STFSTF
461422
461422
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075984%2frewrite-a-system-of-linear-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075984%2frewrite-a-system-of-linear-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown