How to integrate $int_{0}^{2pi}frac{mathrm dx}{(1-acos x)^2}$
$begingroup$
I'm having a hard time trying to resolve this integral :
$$int_{0}^{2pi}frac{mathrm dx}{(1-acos x)^2}$$
where $a$ is a positive real constant.
I tried using substitution, but I'm stuck by the fact that the integral must be computed between $0$ and $2pi$, which leads to integration between $X$ and $X$ (where $X$ can be $0$ or $1$ anything following the substitution in the boundaries).
I'm not looking for the full result if the computation is complicated, just some lead to start off...
Thanks
UPDATE : seeing the answers proposed, I checked that indeed $|a|<1$.
calculus integration analysis trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
I'm having a hard time trying to resolve this integral :
$$int_{0}^{2pi}frac{mathrm dx}{(1-acos x)^2}$$
where $a$ is a positive real constant.
I tried using substitution, but I'm stuck by the fact that the integral must be computed between $0$ and $2pi$, which leads to integration between $X$ and $X$ (where $X$ can be $0$ or $1$ anything following the substitution in the boundaries).
I'm not looking for the full result if the computation is complicated, just some lead to start off...
Thanks
UPDATE : seeing the answers proposed, I checked that indeed $|a|<1$.
calculus integration analysis trigonometric-integrals
$endgroup$
2
$begingroup$
Do you realize it essentially is the area enclosed by an ellipse?
$endgroup$
– Jack D'Aurizio
Jan 16 at 17:24
2
$begingroup$
Similar : math.stackexchange.com/q/1846774/321264.
$endgroup$
– StubbornAtom
Jan 16 at 18:01
2
$begingroup$
You can start with the standard result $$int_{0}^{2pi}frac{dx}{a-bcos x} =frac{2pi}{sqrt{a^2-b^2}}$$ and differentiate it with respect to $a$ and then put $a=1$ and replace $b$ by $a$.
$endgroup$
– Paramanand Singh
Jan 17 at 5:24
add a comment |
$begingroup$
I'm having a hard time trying to resolve this integral :
$$int_{0}^{2pi}frac{mathrm dx}{(1-acos x)^2}$$
where $a$ is a positive real constant.
I tried using substitution, but I'm stuck by the fact that the integral must be computed between $0$ and $2pi$, which leads to integration between $X$ and $X$ (where $X$ can be $0$ or $1$ anything following the substitution in the boundaries).
I'm not looking for the full result if the computation is complicated, just some lead to start off...
Thanks
UPDATE : seeing the answers proposed, I checked that indeed $|a|<1$.
calculus integration analysis trigonometric-integrals
$endgroup$
I'm having a hard time trying to resolve this integral :
$$int_{0}^{2pi}frac{mathrm dx}{(1-acos x)^2}$$
where $a$ is a positive real constant.
I tried using substitution, but I'm stuck by the fact that the integral must be computed between $0$ and $2pi$, which leads to integration between $X$ and $X$ (where $X$ can be $0$ or $1$ anything following the substitution in the boundaries).
I'm not looking for the full result if the computation is complicated, just some lead to start off...
Thanks
UPDATE : seeing the answers proposed, I checked that indeed $|a|<1$.
calculus integration analysis trigonometric-integrals
calculus integration analysis trigonometric-integrals
edited Jan 16 at 20:29
mocquin
asked Jan 16 at 17:22
mocquinmocquin
213
213
2
$begingroup$
Do you realize it essentially is the area enclosed by an ellipse?
$endgroup$
– Jack D'Aurizio
Jan 16 at 17:24
2
$begingroup$
Similar : math.stackexchange.com/q/1846774/321264.
$endgroup$
– StubbornAtom
Jan 16 at 18:01
2
$begingroup$
You can start with the standard result $$int_{0}^{2pi}frac{dx}{a-bcos x} =frac{2pi}{sqrt{a^2-b^2}}$$ and differentiate it with respect to $a$ and then put $a=1$ and replace $b$ by $a$.
$endgroup$
– Paramanand Singh
Jan 17 at 5:24
add a comment |
2
$begingroup$
Do you realize it essentially is the area enclosed by an ellipse?
$endgroup$
– Jack D'Aurizio
Jan 16 at 17:24
2
$begingroup$
Similar : math.stackexchange.com/q/1846774/321264.
$endgroup$
– StubbornAtom
Jan 16 at 18:01
2
$begingroup$
You can start with the standard result $$int_{0}^{2pi}frac{dx}{a-bcos x} =frac{2pi}{sqrt{a^2-b^2}}$$ and differentiate it with respect to $a$ and then put $a=1$ and replace $b$ by $a$.
$endgroup$
– Paramanand Singh
Jan 17 at 5:24
2
2
$begingroup$
Do you realize it essentially is the area enclosed by an ellipse?
$endgroup$
– Jack D'Aurizio
Jan 16 at 17:24
$begingroup$
Do you realize it essentially is the area enclosed by an ellipse?
$endgroup$
– Jack D'Aurizio
Jan 16 at 17:24
2
2
$begingroup$
Similar : math.stackexchange.com/q/1846774/321264.
$endgroup$
– StubbornAtom
Jan 16 at 18:01
$begingroup$
Similar : math.stackexchange.com/q/1846774/321264.
$endgroup$
– StubbornAtom
Jan 16 at 18:01
2
2
$begingroup$
You can start with the standard result $$int_{0}^{2pi}frac{dx}{a-bcos x} =frac{2pi}{sqrt{a^2-b^2}}$$ and differentiate it with respect to $a$ and then put $a=1$ and replace $b$ by $a$.
$endgroup$
– Paramanand Singh
Jan 17 at 5:24
$begingroup$
You can start with the standard result $$int_{0}^{2pi}frac{dx}{a-bcos x} =frac{2pi}{sqrt{a^2-b^2}}$$ and differentiate it with respect to $a$ and then put $a=1$ and replace $b$ by $a$.
$endgroup$
– Paramanand Singh
Jan 17 at 5:24
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The polar equation of an ellipse (with respect to a focus, taking the aphelion as the point associated to $theta=0$) is
$$ rho(theta) = frac{ell}{1-ecostheta} $$
where, in terms of the standard parameters, $ell$ is the semi-latus rectum $frac{b^2}{a}$ and $e$ is the eccentricity $frac{c}{a}$.
The area enclosed by such ellipse is $pi a b $ or
$$ frac{1}{2}int_{0}^{2pi}frac{ell^2}{(1-ecostheta)^2},dtheta, $$
so we get that for any $ein[0,1)$ the following identity holds:
$$ int_{0}^{2pi}frac{dtheta}{(1-ecostheta)^2}= frac{2pi a b}{ell^2}=2pileft(frac{a}{b}right)^3=frac{2pi}{left(frac{b^2}{a^2}right)^{3/2}}={frac{2pi}{(1-e^2)^{3/2}}}. $$
The same holds if, in the LHS, we replace $e$ with $-e$, since $ rho(theta) = frac{ell}{1+ecostheta} $ is the polar equation of the same ellipse, with the perihelion being taken as the point associated to $theta=0$. So we get that for any $ain(-1,1)$
$$ int_{0}^{2pi}frac{dtheta}{(1-acostheta)^2}= color{blue}{frac{2pi}{(1-a^2)^{3/2}}}. $$
$endgroup$
$begingroup$
Thanks a lot for your answer, I did not realized this was the polar equation of an ellipse! This solution looks quite elegant. I also update my post, the coefficient $a$ is indeed always less than 1.
$endgroup$
– mocquin
Jan 16 at 20:33
1
$begingroup$
+1 for polar equation of ellipse. Although I believe computation of area of ellipse is easier if one uses rectangular coordinates. So in effect your answer uses the equivalence/transformation between these coordinate systems.
$endgroup$
– Paramanand Singh
Jan 17 at 5:15
add a comment |
$begingroup$
HINT:
Note that for $|a|<1$
$$begin{align}
int_0^{2pi}frac{1}{(1-acos(theta))^2},dtheta&=frac1{a^2}int_0^{2pi}frac{1}{(1/a-cos(theta))^2},dtheta\\
&=-frac1{a^2}frac{d}{d(1/a)}int_0^{2pi}frac{1}{1/a-cos(theta)},dthetatag1\\
&= -frac2{a^2}frac{d}{d(1/a)}int_0^{pi}frac{1}{1/a-cos(theta)},dthetatag2
end{align}$$
Now use the Weierstrass substitution to evaluate the integral on the right-hand side of $(2)$ and differentiate to obtain the coveted result.
Alternatively, one could use contour integration to evaluate the integral of interest or evaluate the integral on the right-hand side of $(1)$.
$endgroup$
$begingroup$
The Weierstrass substitution is going to fail if you apply it to this integral. You have to do something first (integrate on $[-pi,pi]$ and split, for instance).
$endgroup$
– Jean-Claude Arbaut
Jan 16 at 17:51
$begingroup$
@Jean-ClaudeArbaut This was meant to be a HINT only. But I've added another line to facilitate.
$endgroup$
– Mark Viola
Jan 16 at 19:52
add a comment |
$begingroup$
My goal with this answer is to give you a bunch of different really general integral formulas that you may find very useful.
$$F(a)=int_0^{pi}frac{mathrm dx}{(1+acos x)^2}$$
So your integral is $2F(-a)$. First off we will preform the tangent-half-angle substitution $t=tan(x/2)$. Hence we have that
$$F(a)=2int_0^infty frac1{(1+afrac{1-t^2}{1+t^2})^2}frac{mathrm dt}{1+t^2}$$
$$F(a)=2int_0^{infty}frac{1+t^2}{[(1-a)t^2+a+1]^2}mathrm dt$$
Which we can rewrite as
$$F(a)=frac2{1-a}int_0^inftyfrac{mathrm dt}{(1-a)t^2+a+1}+frac{4a}{a-1}int_0^{infty}frac{mathrm dt}{[(1-a)t^2+a+1]^2}$$
Next we consider the very general integral
$$I(m;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^{m+1}}$$
First we integrate by parts with $mathrm dv=mathrm dx$ to produce
$$I(m;a,b)=frac{x}{(ax^2+b)^{m+1}}bigg|_0^{infty}+2(m+1)int_0^inftyfrac{ax^2}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)int_0^inftyfrac{ax^2+b-b}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)I(m;a,b)-2(m+1)bI(m+1;a,b)$$
Then solving for $I(m+1;a,b)$ and replacing $m+1$ with $m$,
$$I(m;a,b)=frac{2m-1}{2bm}I(m-1;a,b)$$
And for the base case:
$$I(0;a,b)=int_0^{infty}frac{mathrm dx}{ax^2+b}$$
The Trig sub $x=sqrt{frac{b}a}tan u$ gives
$$I(0;a,b)=fracpi{2sqrt{ab}}$$
Which is a special case of
$$int_{x_1}^{x_2}frac{mathrm dx}{ax^2+bx+c}=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}bigg|_{x_1}^{x_2}$$
Anyway, the recurrence has the solution
$$I(m;a,b)=fracpi{2^{2m+1}b^msqrt{ab}}{2mchoose m}$$
Which we will apply very shortly!
Recalling the definition of $I(m;a,b)$, we have that
$$F(a)=frac2{1-a}I(0;1-a,1+a)+frac{4a}{a-1}I(1;1-a,1+a)$$
$$F(a)=fracpi{(1-a^2)^{3/2}}$$
And since your integral is given by $2F(-a)$,
$$int_0^{2pi}frac{mathrm dx}{(1-acos x)^2}=frac{2pi}{(1-a^2)^{3/2}}$$
ADDENDUM
Consider the integral
$$C(n;a)=int_0^pi frac{mathrm dx}{(1+acos x)^n}$$
Starting with $t=tanfrac{x}2$,
$$C(n;a)=2int_0^infty frac1{left[1+afrac{1-t^2}{1+t^2}right]^n}frac{mathrm dt}{1+t^2}$$
$$C(n;a)=2int_0^infty frac{left(t^2+1right)^{n-1}}{left[(1-a)t^2+1+aright]^n}mathrm dt$$
Then using the binomial theorem,
$$C(n;a)=2sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[(1-a)x^2+1+aright]^n}mathrm dx$$
$$C(n;a)=frac2{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[x^2+frac{1+a}{1-a}right]^n}mathrm dx$$
We then recall the integral due to my collaborator @DavidG,
$$int_0^inftyfrac{x^{q}}{left[x^w+bright]^p}mathrm dx=frac{b^{frac{1+q}{w}-p}}{w}frac{Gammaleft(p-frac{1+q}{w}right)Gammaleft(frac{1+q}{w}right)}{Gammaleft(pright)}$$
Here $Gamma(s)$ is the Gamma function. So with $w=2$, $b=frac{1+a}{1-a}$, $p=n$, and $q=2k$,
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{Gammaleft(nright)}$$
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{k!Gamma(n-k)}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076005%2fhow-to-integrate-int-02-pi-frac-mathrm-dx1-a-cos-x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The polar equation of an ellipse (with respect to a focus, taking the aphelion as the point associated to $theta=0$) is
$$ rho(theta) = frac{ell}{1-ecostheta} $$
where, in terms of the standard parameters, $ell$ is the semi-latus rectum $frac{b^2}{a}$ and $e$ is the eccentricity $frac{c}{a}$.
The area enclosed by such ellipse is $pi a b $ or
$$ frac{1}{2}int_{0}^{2pi}frac{ell^2}{(1-ecostheta)^2},dtheta, $$
so we get that for any $ein[0,1)$ the following identity holds:
$$ int_{0}^{2pi}frac{dtheta}{(1-ecostheta)^2}= frac{2pi a b}{ell^2}=2pileft(frac{a}{b}right)^3=frac{2pi}{left(frac{b^2}{a^2}right)^{3/2}}={frac{2pi}{(1-e^2)^{3/2}}}. $$
The same holds if, in the LHS, we replace $e$ with $-e$, since $ rho(theta) = frac{ell}{1+ecostheta} $ is the polar equation of the same ellipse, with the perihelion being taken as the point associated to $theta=0$. So we get that for any $ain(-1,1)$
$$ int_{0}^{2pi}frac{dtheta}{(1-acostheta)^2}= color{blue}{frac{2pi}{(1-a^2)^{3/2}}}. $$
$endgroup$
$begingroup$
Thanks a lot for your answer, I did not realized this was the polar equation of an ellipse! This solution looks quite elegant. I also update my post, the coefficient $a$ is indeed always less than 1.
$endgroup$
– mocquin
Jan 16 at 20:33
1
$begingroup$
+1 for polar equation of ellipse. Although I believe computation of area of ellipse is easier if one uses rectangular coordinates. So in effect your answer uses the equivalence/transformation between these coordinate systems.
$endgroup$
– Paramanand Singh
Jan 17 at 5:15
add a comment |
$begingroup$
The polar equation of an ellipse (with respect to a focus, taking the aphelion as the point associated to $theta=0$) is
$$ rho(theta) = frac{ell}{1-ecostheta} $$
where, in terms of the standard parameters, $ell$ is the semi-latus rectum $frac{b^2}{a}$ and $e$ is the eccentricity $frac{c}{a}$.
The area enclosed by such ellipse is $pi a b $ or
$$ frac{1}{2}int_{0}^{2pi}frac{ell^2}{(1-ecostheta)^2},dtheta, $$
so we get that for any $ein[0,1)$ the following identity holds:
$$ int_{0}^{2pi}frac{dtheta}{(1-ecostheta)^2}= frac{2pi a b}{ell^2}=2pileft(frac{a}{b}right)^3=frac{2pi}{left(frac{b^2}{a^2}right)^{3/2}}={frac{2pi}{(1-e^2)^{3/2}}}. $$
The same holds if, in the LHS, we replace $e$ with $-e$, since $ rho(theta) = frac{ell}{1+ecostheta} $ is the polar equation of the same ellipse, with the perihelion being taken as the point associated to $theta=0$. So we get that for any $ain(-1,1)$
$$ int_{0}^{2pi}frac{dtheta}{(1-acostheta)^2}= color{blue}{frac{2pi}{(1-a^2)^{3/2}}}. $$
$endgroup$
$begingroup$
Thanks a lot for your answer, I did not realized this was the polar equation of an ellipse! This solution looks quite elegant. I also update my post, the coefficient $a$ is indeed always less than 1.
$endgroup$
– mocquin
Jan 16 at 20:33
1
$begingroup$
+1 for polar equation of ellipse. Although I believe computation of area of ellipse is easier if one uses rectangular coordinates. So in effect your answer uses the equivalence/transformation between these coordinate systems.
$endgroup$
– Paramanand Singh
Jan 17 at 5:15
add a comment |
$begingroup$
The polar equation of an ellipse (with respect to a focus, taking the aphelion as the point associated to $theta=0$) is
$$ rho(theta) = frac{ell}{1-ecostheta} $$
where, in terms of the standard parameters, $ell$ is the semi-latus rectum $frac{b^2}{a}$ and $e$ is the eccentricity $frac{c}{a}$.
The area enclosed by such ellipse is $pi a b $ or
$$ frac{1}{2}int_{0}^{2pi}frac{ell^2}{(1-ecostheta)^2},dtheta, $$
so we get that for any $ein[0,1)$ the following identity holds:
$$ int_{0}^{2pi}frac{dtheta}{(1-ecostheta)^2}= frac{2pi a b}{ell^2}=2pileft(frac{a}{b}right)^3=frac{2pi}{left(frac{b^2}{a^2}right)^{3/2}}={frac{2pi}{(1-e^2)^{3/2}}}. $$
The same holds if, in the LHS, we replace $e$ with $-e$, since $ rho(theta) = frac{ell}{1+ecostheta} $ is the polar equation of the same ellipse, with the perihelion being taken as the point associated to $theta=0$. So we get that for any $ain(-1,1)$
$$ int_{0}^{2pi}frac{dtheta}{(1-acostheta)^2}= color{blue}{frac{2pi}{(1-a^2)^{3/2}}}. $$
$endgroup$
The polar equation of an ellipse (with respect to a focus, taking the aphelion as the point associated to $theta=0$) is
$$ rho(theta) = frac{ell}{1-ecostheta} $$
where, in terms of the standard parameters, $ell$ is the semi-latus rectum $frac{b^2}{a}$ and $e$ is the eccentricity $frac{c}{a}$.
The area enclosed by such ellipse is $pi a b $ or
$$ frac{1}{2}int_{0}^{2pi}frac{ell^2}{(1-ecostheta)^2},dtheta, $$
so we get that for any $ein[0,1)$ the following identity holds:
$$ int_{0}^{2pi}frac{dtheta}{(1-ecostheta)^2}= frac{2pi a b}{ell^2}=2pileft(frac{a}{b}right)^3=frac{2pi}{left(frac{b^2}{a^2}right)^{3/2}}={frac{2pi}{(1-e^2)^{3/2}}}. $$
The same holds if, in the LHS, we replace $e$ with $-e$, since $ rho(theta) = frac{ell}{1+ecostheta} $ is the polar equation of the same ellipse, with the perihelion being taken as the point associated to $theta=0$. So we get that for any $ain(-1,1)$
$$ int_{0}^{2pi}frac{dtheta}{(1-acostheta)^2}= color{blue}{frac{2pi}{(1-a^2)^{3/2}}}. $$
answered Jan 16 at 17:31
Jack D'AurizioJack D'Aurizio
292k33284672
292k33284672
$begingroup$
Thanks a lot for your answer, I did not realized this was the polar equation of an ellipse! This solution looks quite elegant. I also update my post, the coefficient $a$ is indeed always less than 1.
$endgroup$
– mocquin
Jan 16 at 20:33
1
$begingroup$
+1 for polar equation of ellipse. Although I believe computation of area of ellipse is easier if one uses rectangular coordinates. So in effect your answer uses the equivalence/transformation between these coordinate systems.
$endgroup$
– Paramanand Singh
Jan 17 at 5:15
add a comment |
$begingroup$
Thanks a lot for your answer, I did not realized this was the polar equation of an ellipse! This solution looks quite elegant. I also update my post, the coefficient $a$ is indeed always less than 1.
$endgroup$
– mocquin
Jan 16 at 20:33
1
$begingroup$
+1 for polar equation of ellipse. Although I believe computation of area of ellipse is easier if one uses rectangular coordinates. So in effect your answer uses the equivalence/transformation between these coordinate systems.
$endgroup$
– Paramanand Singh
Jan 17 at 5:15
$begingroup$
Thanks a lot for your answer, I did not realized this was the polar equation of an ellipse! This solution looks quite elegant. I also update my post, the coefficient $a$ is indeed always less than 1.
$endgroup$
– mocquin
Jan 16 at 20:33
$begingroup$
Thanks a lot for your answer, I did not realized this was the polar equation of an ellipse! This solution looks quite elegant. I also update my post, the coefficient $a$ is indeed always less than 1.
$endgroup$
– mocquin
Jan 16 at 20:33
1
1
$begingroup$
+1 for polar equation of ellipse. Although I believe computation of area of ellipse is easier if one uses rectangular coordinates. So in effect your answer uses the equivalence/transformation between these coordinate systems.
$endgroup$
– Paramanand Singh
Jan 17 at 5:15
$begingroup$
+1 for polar equation of ellipse. Although I believe computation of area of ellipse is easier if one uses rectangular coordinates. So in effect your answer uses the equivalence/transformation between these coordinate systems.
$endgroup$
– Paramanand Singh
Jan 17 at 5:15
add a comment |
$begingroup$
HINT:
Note that for $|a|<1$
$$begin{align}
int_0^{2pi}frac{1}{(1-acos(theta))^2},dtheta&=frac1{a^2}int_0^{2pi}frac{1}{(1/a-cos(theta))^2},dtheta\\
&=-frac1{a^2}frac{d}{d(1/a)}int_0^{2pi}frac{1}{1/a-cos(theta)},dthetatag1\\
&= -frac2{a^2}frac{d}{d(1/a)}int_0^{pi}frac{1}{1/a-cos(theta)},dthetatag2
end{align}$$
Now use the Weierstrass substitution to evaluate the integral on the right-hand side of $(2)$ and differentiate to obtain the coveted result.
Alternatively, one could use contour integration to evaluate the integral of interest or evaluate the integral on the right-hand side of $(1)$.
$endgroup$
$begingroup$
The Weierstrass substitution is going to fail if you apply it to this integral. You have to do something first (integrate on $[-pi,pi]$ and split, for instance).
$endgroup$
– Jean-Claude Arbaut
Jan 16 at 17:51
$begingroup$
@Jean-ClaudeArbaut This was meant to be a HINT only. But I've added another line to facilitate.
$endgroup$
– Mark Viola
Jan 16 at 19:52
add a comment |
$begingroup$
HINT:
Note that for $|a|<1$
$$begin{align}
int_0^{2pi}frac{1}{(1-acos(theta))^2},dtheta&=frac1{a^2}int_0^{2pi}frac{1}{(1/a-cos(theta))^2},dtheta\\
&=-frac1{a^2}frac{d}{d(1/a)}int_0^{2pi}frac{1}{1/a-cos(theta)},dthetatag1\\
&= -frac2{a^2}frac{d}{d(1/a)}int_0^{pi}frac{1}{1/a-cos(theta)},dthetatag2
end{align}$$
Now use the Weierstrass substitution to evaluate the integral on the right-hand side of $(2)$ and differentiate to obtain the coveted result.
Alternatively, one could use contour integration to evaluate the integral of interest or evaluate the integral on the right-hand side of $(1)$.
$endgroup$
$begingroup$
The Weierstrass substitution is going to fail if you apply it to this integral. You have to do something first (integrate on $[-pi,pi]$ and split, for instance).
$endgroup$
– Jean-Claude Arbaut
Jan 16 at 17:51
$begingroup$
@Jean-ClaudeArbaut This was meant to be a HINT only. But I've added another line to facilitate.
$endgroup$
– Mark Viola
Jan 16 at 19:52
add a comment |
$begingroup$
HINT:
Note that for $|a|<1$
$$begin{align}
int_0^{2pi}frac{1}{(1-acos(theta))^2},dtheta&=frac1{a^2}int_0^{2pi}frac{1}{(1/a-cos(theta))^2},dtheta\\
&=-frac1{a^2}frac{d}{d(1/a)}int_0^{2pi}frac{1}{1/a-cos(theta)},dthetatag1\\
&= -frac2{a^2}frac{d}{d(1/a)}int_0^{pi}frac{1}{1/a-cos(theta)},dthetatag2
end{align}$$
Now use the Weierstrass substitution to evaluate the integral on the right-hand side of $(2)$ and differentiate to obtain the coveted result.
Alternatively, one could use contour integration to evaluate the integral of interest or evaluate the integral on the right-hand side of $(1)$.
$endgroup$
HINT:
Note that for $|a|<1$
$$begin{align}
int_0^{2pi}frac{1}{(1-acos(theta))^2},dtheta&=frac1{a^2}int_0^{2pi}frac{1}{(1/a-cos(theta))^2},dtheta\\
&=-frac1{a^2}frac{d}{d(1/a)}int_0^{2pi}frac{1}{1/a-cos(theta)},dthetatag1\\
&= -frac2{a^2}frac{d}{d(1/a)}int_0^{pi}frac{1}{1/a-cos(theta)},dthetatag2
end{align}$$
Now use the Weierstrass substitution to evaluate the integral on the right-hand side of $(2)$ and differentiate to obtain the coveted result.
Alternatively, one could use contour integration to evaluate the integral of interest or evaluate the integral on the right-hand side of $(1)$.
edited Jan 16 at 19:51
answered Jan 16 at 17:33
Mark ViolaMark Viola
134k1278177
134k1278177
$begingroup$
The Weierstrass substitution is going to fail if you apply it to this integral. You have to do something first (integrate on $[-pi,pi]$ and split, for instance).
$endgroup$
– Jean-Claude Arbaut
Jan 16 at 17:51
$begingroup$
@Jean-ClaudeArbaut This was meant to be a HINT only. But I've added another line to facilitate.
$endgroup$
– Mark Viola
Jan 16 at 19:52
add a comment |
$begingroup$
The Weierstrass substitution is going to fail if you apply it to this integral. You have to do something first (integrate on $[-pi,pi]$ and split, for instance).
$endgroup$
– Jean-Claude Arbaut
Jan 16 at 17:51
$begingroup$
@Jean-ClaudeArbaut This was meant to be a HINT only. But I've added another line to facilitate.
$endgroup$
– Mark Viola
Jan 16 at 19:52
$begingroup$
The Weierstrass substitution is going to fail if you apply it to this integral. You have to do something first (integrate on $[-pi,pi]$ and split, for instance).
$endgroup$
– Jean-Claude Arbaut
Jan 16 at 17:51
$begingroup$
The Weierstrass substitution is going to fail if you apply it to this integral. You have to do something first (integrate on $[-pi,pi]$ and split, for instance).
$endgroup$
– Jean-Claude Arbaut
Jan 16 at 17:51
$begingroup$
@Jean-ClaudeArbaut This was meant to be a HINT only. But I've added another line to facilitate.
$endgroup$
– Mark Viola
Jan 16 at 19:52
$begingroup$
@Jean-ClaudeArbaut This was meant to be a HINT only. But I've added another line to facilitate.
$endgroup$
– Mark Viola
Jan 16 at 19:52
add a comment |
$begingroup$
My goal with this answer is to give you a bunch of different really general integral formulas that you may find very useful.
$$F(a)=int_0^{pi}frac{mathrm dx}{(1+acos x)^2}$$
So your integral is $2F(-a)$. First off we will preform the tangent-half-angle substitution $t=tan(x/2)$. Hence we have that
$$F(a)=2int_0^infty frac1{(1+afrac{1-t^2}{1+t^2})^2}frac{mathrm dt}{1+t^2}$$
$$F(a)=2int_0^{infty}frac{1+t^2}{[(1-a)t^2+a+1]^2}mathrm dt$$
Which we can rewrite as
$$F(a)=frac2{1-a}int_0^inftyfrac{mathrm dt}{(1-a)t^2+a+1}+frac{4a}{a-1}int_0^{infty}frac{mathrm dt}{[(1-a)t^2+a+1]^2}$$
Next we consider the very general integral
$$I(m;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^{m+1}}$$
First we integrate by parts with $mathrm dv=mathrm dx$ to produce
$$I(m;a,b)=frac{x}{(ax^2+b)^{m+1}}bigg|_0^{infty}+2(m+1)int_0^inftyfrac{ax^2}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)int_0^inftyfrac{ax^2+b-b}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)I(m;a,b)-2(m+1)bI(m+1;a,b)$$
Then solving for $I(m+1;a,b)$ and replacing $m+1$ with $m$,
$$I(m;a,b)=frac{2m-1}{2bm}I(m-1;a,b)$$
And for the base case:
$$I(0;a,b)=int_0^{infty}frac{mathrm dx}{ax^2+b}$$
The Trig sub $x=sqrt{frac{b}a}tan u$ gives
$$I(0;a,b)=fracpi{2sqrt{ab}}$$
Which is a special case of
$$int_{x_1}^{x_2}frac{mathrm dx}{ax^2+bx+c}=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}bigg|_{x_1}^{x_2}$$
Anyway, the recurrence has the solution
$$I(m;a,b)=fracpi{2^{2m+1}b^msqrt{ab}}{2mchoose m}$$
Which we will apply very shortly!
Recalling the definition of $I(m;a,b)$, we have that
$$F(a)=frac2{1-a}I(0;1-a,1+a)+frac{4a}{a-1}I(1;1-a,1+a)$$
$$F(a)=fracpi{(1-a^2)^{3/2}}$$
And since your integral is given by $2F(-a)$,
$$int_0^{2pi}frac{mathrm dx}{(1-acos x)^2}=frac{2pi}{(1-a^2)^{3/2}}$$
ADDENDUM
Consider the integral
$$C(n;a)=int_0^pi frac{mathrm dx}{(1+acos x)^n}$$
Starting with $t=tanfrac{x}2$,
$$C(n;a)=2int_0^infty frac1{left[1+afrac{1-t^2}{1+t^2}right]^n}frac{mathrm dt}{1+t^2}$$
$$C(n;a)=2int_0^infty frac{left(t^2+1right)^{n-1}}{left[(1-a)t^2+1+aright]^n}mathrm dt$$
Then using the binomial theorem,
$$C(n;a)=2sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[(1-a)x^2+1+aright]^n}mathrm dx$$
$$C(n;a)=frac2{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[x^2+frac{1+a}{1-a}right]^n}mathrm dx$$
We then recall the integral due to my collaborator @DavidG,
$$int_0^inftyfrac{x^{q}}{left[x^w+bright]^p}mathrm dx=frac{b^{frac{1+q}{w}-p}}{w}frac{Gammaleft(p-frac{1+q}{w}right)Gammaleft(frac{1+q}{w}right)}{Gammaleft(pright)}$$
Here $Gamma(s)$ is the Gamma function. So with $w=2$, $b=frac{1+a}{1-a}$, $p=n$, and $q=2k$,
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{Gammaleft(nright)}$$
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{k!Gamma(n-k)}$$
$endgroup$
add a comment |
$begingroup$
My goal with this answer is to give you a bunch of different really general integral formulas that you may find very useful.
$$F(a)=int_0^{pi}frac{mathrm dx}{(1+acos x)^2}$$
So your integral is $2F(-a)$. First off we will preform the tangent-half-angle substitution $t=tan(x/2)$. Hence we have that
$$F(a)=2int_0^infty frac1{(1+afrac{1-t^2}{1+t^2})^2}frac{mathrm dt}{1+t^2}$$
$$F(a)=2int_0^{infty}frac{1+t^2}{[(1-a)t^2+a+1]^2}mathrm dt$$
Which we can rewrite as
$$F(a)=frac2{1-a}int_0^inftyfrac{mathrm dt}{(1-a)t^2+a+1}+frac{4a}{a-1}int_0^{infty}frac{mathrm dt}{[(1-a)t^2+a+1]^2}$$
Next we consider the very general integral
$$I(m;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^{m+1}}$$
First we integrate by parts with $mathrm dv=mathrm dx$ to produce
$$I(m;a,b)=frac{x}{(ax^2+b)^{m+1}}bigg|_0^{infty}+2(m+1)int_0^inftyfrac{ax^2}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)int_0^inftyfrac{ax^2+b-b}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)I(m;a,b)-2(m+1)bI(m+1;a,b)$$
Then solving for $I(m+1;a,b)$ and replacing $m+1$ with $m$,
$$I(m;a,b)=frac{2m-1}{2bm}I(m-1;a,b)$$
And for the base case:
$$I(0;a,b)=int_0^{infty}frac{mathrm dx}{ax^2+b}$$
The Trig sub $x=sqrt{frac{b}a}tan u$ gives
$$I(0;a,b)=fracpi{2sqrt{ab}}$$
Which is a special case of
$$int_{x_1}^{x_2}frac{mathrm dx}{ax^2+bx+c}=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}bigg|_{x_1}^{x_2}$$
Anyway, the recurrence has the solution
$$I(m;a,b)=fracpi{2^{2m+1}b^msqrt{ab}}{2mchoose m}$$
Which we will apply very shortly!
Recalling the definition of $I(m;a,b)$, we have that
$$F(a)=frac2{1-a}I(0;1-a,1+a)+frac{4a}{a-1}I(1;1-a,1+a)$$
$$F(a)=fracpi{(1-a^2)^{3/2}}$$
And since your integral is given by $2F(-a)$,
$$int_0^{2pi}frac{mathrm dx}{(1-acos x)^2}=frac{2pi}{(1-a^2)^{3/2}}$$
ADDENDUM
Consider the integral
$$C(n;a)=int_0^pi frac{mathrm dx}{(1+acos x)^n}$$
Starting with $t=tanfrac{x}2$,
$$C(n;a)=2int_0^infty frac1{left[1+afrac{1-t^2}{1+t^2}right]^n}frac{mathrm dt}{1+t^2}$$
$$C(n;a)=2int_0^infty frac{left(t^2+1right)^{n-1}}{left[(1-a)t^2+1+aright]^n}mathrm dt$$
Then using the binomial theorem,
$$C(n;a)=2sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[(1-a)x^2+1+aright]^n}mathrm dx$$
$$C(n;a)=frac2{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[x^2+frac{1+a}{1-a}right]^n}mathrm dx$$
We then recall the integral due to my collaborator @DavidG,
$$int_0^inftyfrac{x^{q}}{left[x^w+bright]^p}mathrm dx=frac{b^{frac{1+q}{w}-p}}{w}frac{Gammaleft(p-frac{1+q}{w}right)Gammaleft(frac{1+q}{w}right)}{Gammaleft(pright)}$$
Here $Gamma(s)$ is the Gamma function. So with $w=2$, $b=frac{1+a}{1-a}$, $p=n$, and $q=2k$,
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{Gammaleft(nright)}$$
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{k!Gamma(n-k)}$$
$endgroup$
add a comment |
$begingroup$
My goal with this answer is to give you a bunch of different really general integral formulas that you may find very useful.
$$F(a)=int_0^{pi}frac{mathrm dx}{(1+acos x)^2}$$
So your integral is $2F(-a)$. First off we will preform the tangent-half-angle substitution $t=tan(x/2)$. Hence we have that
$$F(a)=2int_0^infty frac1{(1+afrac{1-t^2}{1+t^2})^2}frac{mathrm dt}{1+t^2}$$
$$F(a)=2int_0^{infty}frac{1+t^2}{[(1-a)t^2+a+1]^2}mathrm dt$$
Which we can rewrite as
$$F(a)=frac2{1-a}int_0^inftyfrac{mathrm dt}{(1-a)t^2+a+1}+frac{4a}{a-1}int_0^{infty}frac{mathrm dt}{[(1-a)t^2+a+1]^2}$$
Next we consider the very general integral
$$I(m;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^{m+1}}$$
First we integrate by parts with $mathrm dv=mathrm dx$ to produce
$$I(m;a,b)=frac{x}{(ax^2+b)^{m+1}}bigg|_0^{infty}+2(m+1)int_0^inftyfrac{ax^2}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)int_0^inftyfrac{ax^2+b-b}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)I(m;a,b)-2(m+1)bI(m+1;a,b)$$
Then solving for $I(m+1;a,b)$ and replacing $m+1$ with $m$,
$$I(m;a,b)=frac{2m-1}{2bm}I(m-1;a,b)$$
And for the base case:
$$I(0;a,b)=int_0^{infty}frac{mathrm dx}{ax^2+b}$$
The Trig sub $x=sqrt{frac{b}a}tan u$ gives
$$I(0;a,b)=fracpi{2sqrt{ab}}$$
Which is a special case of
$$int_{x_1}^{x_2}frac{mathrm dx}{ax^2+bx+c}=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}bigg|_{x_1}^{x_2}$$
Anyway, the recurrence has the solution
$$I(m;a,b)=fracpi{2^{2m+1}b^msqrt{ab}}{2mchoose m}$$
Which we will apply very shortly!
Recalling the definition of $I(m;a,b)$, we have that
$$F(a)=frac2{1-a}I(0;1-a,1+a)+frac{4a}{a-1}I(1;1-a,1+a)$$
$$F(a)=fracpi{(1-a^2)^{3/2}}$$
And since your integral is given by $2F(-a)$,
$$int_0^{2pi}frac{mathrm dx}{(1-acos x)^2}=frac{2pi}{(1-a^2)^{3/2}}$$
ADDENDUM
Consider the integral
$$C(n;a)=int_0^pi frac{mathrm dx}{(1+acos x)^n}$$
Starting with $t=tanfrac{x}2$,
$$C(n;a)=2int_0^infty frac1{left[1+afrac{1-t^2}{1+t^2}right]^n}frac{mathrm dt}{1+t^2}$$
$$C(n;a)=2int_0^infty frac{left(t^2+1right)^{n-1}}{left[(1-a)t^2+1+aright]^n}mathrm dt$$
Then using the binomial theorem,
$$C(n;a)=2sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[(1-a)x^2+1+aright]^n}mathrm dx$$
$$C(n;a)=frac2{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[x^2+frac{1+a}{1-a}right]^n}mathrm dx$$
We then recall the integral due to my collaborator @DavidG,
$$int_0^inftyfrac{x^{q}}{left[x^w+bright]^p}mathrm dx=frac{b^{frac{1+q}{w}-p}}{w}frac{Gammaleft(p-frac{1+q}{w}right)Gammaleft(frac{1+q}{w}right)}{Gammaleft(pright)}$$
Here $Gamma(s)$ is the Gamma function. So with $w=2$, $b=frac{1+a}{1-a}$, $p=n$, and $q=2k$,
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{Gammaleft(nright)}$$
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{k!Gamma(n-k)}$$
$endgroup$
My goal with this answer is to give you a bunch of different really general integral formulas that you may find very useful.
$$F(a)=int_0^{pi}frac{mathrm dx}{(1+acos x)^2}$$
So your integral is $2F(-a)$. First off we will preform the tangent-half-angle substitution $t=tan(x/2)$. Hence we have that
$$F(a)=2int_0^infty frac1{(1+afrac{1-t^2}{1+t^2})^2}frac{mathrm dt}{1+t^2}$$
$$F(a)=2int_0^{infty}frac{1+t^2}{[(1-a)t^2+a+1]^2}mathrm dt$$
Which we can rewrite as
$$F(a)=frac2{1-a}int_0^inftyfrac{mathrm dt}{(1-a)t^2+a+1}+frac{4a}{a-1}int_0^{infty}frac{mathrm dt}{[(1-a)t^2+a+1]^2}$$
Next we consider the very general integral
$$I(m;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^{m+1}}$$
First we integrate by parts with $mathrm dv=mathrm dx$ to produce
$$I(m;a,b)=frac{x}{(ax^2+b)^{m+1}}bigg|_0^{infty}+2(m+1)int_0^inftyfrac{ax^2}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)int_0^inftyfrac{ax^2+b-b}{(ax^2+b)^{m+2}}mathrm dx$$
$$I(m;a,b)=2(m+1)I(m;a,b)-2(m+1)bI(m+1;a,b)$$
Then solving for $I(m+1;a,b)$ and replacing $m+1$ with $m$,
$$I(m;a,b)=frac{2m-1}{2bm}I(m-1;a,b)$$
And for the base case:
$$I(0;a,b)=int_0^{infty}frac{mathrm dx}{ax^2+b}$$
The Trig sub $x=sqrt{frac{b}a}tan u$ gives
$$I(0;a,b)=fracpi{2sqrt{ab}}$$
Which is a special case of
$$int_{x_1}^{x_2}frac{mathrm dx}{ax^2+bx+c}=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}bigg|_{x_1}^{x_2}$$
Anyway, the recurrence has the solution
$$I(m;a,b)=fracpi{2^{2m+1}b^msqrt{ab}}{2mchoose m}$$
Which we will apply very shortly!
Recalling the definition of $I(m;a,b)$, we have that
$$F(a)=frac2{1-a}I(0;1-a,1+a)+frac{4a}{a-1}I(1;1-a,1+a)$$
$$F(a)=fracpi{(1-a^2)^{3/2}}$$
And since your integral is given by $2F(-a)$,
$$int_0^{2pi}frac{mathrm dx}{(1-acos x)^2}=frac{2pi}{(1-a^2)^{3/2}}$$
ADDENDUM
Consider the integral
$$C(n;a)=int_0^pi frac{mathrm dx}{(1+acos x)^n}$$
Starting with $t=tanfrac{x}2$,
$$C(n;a)=2int_0^infty frac1{left[1+afrac{1-t^2}{1+t^2}right]^n}frac{mathrm dt}{1+t^2}$$
$$C(n;a)=2int_0^infty frac{left(t^2+1right)^{n-1}}{left[(1-a)t^2+1+aright]^n}mathrm dt$$
Then using the binomial theorem,
$$C(n;a)=2sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[(1-a)x^2+1+aright]^n}mathrm dx$$
$$C(n;a)=frac2{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}int_0^inftyfrac{x^{2k}}{left[x^2+frac{1+a}{1-a}right]^n}mathrm dx$$
We then recall the integral due to my collaborator @DavidG,
$$int_0^inftyfrac{x^{q}}{left[x^w+bright]^p}mathrm dx=frac{b^{frac{1+q}{w}-p}}{w}frac{Gammaleft(p-frac{1+q}{w}right)Gammaleft(frac{1+q}{w}right)}{Gammaleft(pright)}$$
Here $Gamma(s)$ is the Gamma function. So with $w=2$, $b=frac{1+a}{1-a}$, $p=n$, and $q=2k$,
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}{n-1choose k}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{Gammaleft(nright)}$$
$$C(n;a)=frac1{(1-a)^n}sum_{k=0}^{n-1}left(frac{1+a}{1-a}right)^{frac{2k+1}{2}-n}frac{Gammaleft(n-frac{2k+1}{2}right)Gammaleft(frac{2k+1}{2}right)}{k!Gamma(n-k)}$$
edited Jan 18 at 1:24
answered Jan 17 at 2:49
clathratusclathratus
5,0991439
5,0991439
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076005%2fhow-to-integrate-int-02-pi-frac-mathrm-dx1-a-cos-x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Do you realize it essentially is the area enclosed by an ellipse?
$endgroup$
– Jack D'Aurizio
Jan 16 at 17:24
2
$begingroup$
Similar : math.stackexchange.com/q/1846774/321264.
$endgroup$
– StubbornAtom
Jan 16 at 18:01
2
$begingroup$
You can start with the standard result $$int_{0}^{2pi}frac{dx}{a-bcos x} =frac{2pi}{sqrt{a^2-b^2}}$$ and differentiate it with respect to $a$ and then put $a=1$ and replace $b$ by $a$.
$endgroup$
– Paramanand Singh
Jan 17 at 5:24