Prove that $|cdot|_1$ and $|cdot|_2$ are not equivalent norms on $C[0, 1]$.












-2












$begingroup$


Consider the sequence $f_n(x) = x^n$. Then $|f_n|_1 = frac{1}{n+1}$, and $|f_n|_2= frac{1}{sqrt{2n+1}}$



How do you get from $f_n(x) = x^n$ to $|f_n|_1 = frac{1}{n+1}$ ?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Welcome to MSE! What is the definition of $Vert cdot Vert_1$? Of $Vert cdot Vert_2$?
    $endgroup$
    – mathcounterexamples.net
    Jan 16 at 16:39
















-2












$begingroup$


Consider the sequence $f_n(x) = x^n$. Then $|f_n|_1 = frac{1}{n+1}$, and $|f_n|_2= frac{1}{sqrt{2n+1}}$



How do you get from $f_n(x) = x^n$ to $|f_n|_1 = frac{1}{n+1}$ ?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Welcome to MSE! What is the definition of $Vert cdot Vert_1$? Of $Vert cdot Vert_2$?
    $endgroup$
    – mathcounterexamples.net
    Jan 16 at 16:39














-2












-2








-2





$begingroup$


Consider the sequence $f_n(x) = x^n$. Then $|f_n|_1 = frac{1}{n+1}$, and $|f_n|_2= frac{1}{sqrt{2n+1}}$



How do you get from $f_n(x) = x^n$ to $|f_n|_1 = frac{1}{n+1}$ ?










share|cite|improve this question











$endgroup$




Consider the sequence $f_n(x) = x^n$. Then $|f_n|_1 = frac{1}{n+1}$, and $|f_n|_2= frac{1}{sqrt{2n+1}}$



How do you get from $f_n(x) = x^n$ to $|f_n|_1 = frac{1}{n+1}$ ?







functional-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 17:16







Domo Jens

















asked Jan 16 at 16:37









Domo JensDomo Jens

12




12








  • 2




    $begingroup$
    Welcome to MSE! What is the definition of $Vert cdot Vert_1$? Of $Vert cdot Vert_2$?
    $endgroup$
    – mathcounterexamples.net
    Jan 16 at 16:39














  • 2




    $begingroup$
    Welcome to MSE! What is the definition of $Vert cdot Vert_1$? Of $Vert cdot Vert_2$?
    $endgroup$
    – mathcounterexamples.net
    Jan 16 at 16:39








2




2




$begingroup$
Welcome to MSE! What is the definition of $Vert cdot Vert_1$? Of $Vert cdot Vert_2$?
$endgroup$
– mathcounterexamples.net
Jan 16 at 16:39




$begingroup$
Welcome to MSE! What is the definition of $Vert cdot Vert_1$? Of $Vert cdot Vert_2$?
$endgroup$
– mathcounterexamples.net
Jan 16 at 16:39










1 Answer
1






active

oldest

votes


















1












$begingroup$

In your case,
$$|f|_1=int_0^1 |f(t)|dt,$$
and
$$|f|_2=sqrt{int_0^1 |f(t)|^2dt}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I know but in this case ,how integral x^n get into 1/n+1
    $endgroup$
    – Domo Jens
    Jan 16 at 17:17










  • $begingroup$
    The primitive function of $x^n$ is $frac{x^{n+1}}{n+1}$ !
    $endgroup$
    – S. Maths
    Jan 16 at 17:22










  • $begingroup$
    thank you so much!
    $endgroup$
    – Domo Jens
    Jan 16 at 19:18












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075949%2fprove-that-cdot-1-and-cdot-2-are-not-equivalent-norms-on-c0-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

In your case,
$$|f|_1=int_0^1 |f(t)|dt,$$
and
$$|f|_2=sqrt{int_0^1 |f(t)|^2dt}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I know but in this case ,how integral x^n get into 1/n+1
    $endgroup$
    – Domo Jens
    Jan 16 at 17:17










  • $begingroup$
    The primitive function of $x^n$ is $frac{x^{n+1}}{n+1}$ !
    $endgroup$
    – S. Maths
    Jan 16 at 17:22










  • $begingroup$
    thank you so much!
    $endgroup$
    – Domo Jens
    Jan 16 at 19:18
















1












$begingroup$

In your case,
$$|f|_1=int_0^1 |f(t)|dt,$$
and
$$|f|_2=sqrt{int_0^1 |f(t)|^2dt}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I know but in this case ,how integral x^n get into 1/n+1
    $endgroup$
    – Domo Jens
    Jan 16 at 17:17










  • $begingroup$
    The primitive function of $x^n$ is $frac{x^{n+1}}{n+1}$ !
    $endgroup$
    – S. Maths
    Jan 16 at 17:22










  • $begingroup$
    thank you so much!
    $endgroup$
    – Domo Jens
    Jan 16 at 19:18














1












1








1





$begingroup$

In your case,
$$|f|_1=int_0^1 |f(t)|dt,$$
and
$$|f|_2=sqrt{int_0^1 |f(t)|^2dt}.$$






share|cite|improve this answer









$endgroup$



In your case,
$$|f|_1=int_0^1 |f(t)|dt,$$
and
$$|f|_2=sqrt{int_0^1 |f(t)|^2dt}.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 16 at 16:42









S. MathsS. Maths

657116




657116












  • $begingroup$
    I know but in this case ,how integral x^n get into 1/n+1
    $endgroup$
    – Domo Jens
    Jan 16 at 17:17










  • $begingroup$
    The primitive function of $x^n$ is $frac{x^{n+1}}{n+1}$ !
    $endgroup$
    – S. Maths
    Jan 16 at 17:22










  • $begingroup$
    thank you so much!
    $endgroup$
    – Domo Jens
    Jan 16 at 19:18


















  • $begingroup$
    I know but in this case ,how integral x^n get into 1/n+1
    $endgroup$
    – Domo Jens
    Jan 16 at 17:17










  • $begingroup$
    The primitive function of $x^n$ is $frac{x^{n+1}}{n+1}$ !
    $endgroup$
    – S. Maths
    Jan 16 at 17:22










  • $begingroup$
    thank you so much!
    $endgroup$
    – Domo Jens
    Jan 16 at 19:18
















$begingroup$
I know but in this case ,how integral x^n get into 1/n+1
$endgroup$
– Domo Jens
Jan 16 at 17:17




$begingroup$
I know but in this case ,how integral x^n get into 1/n+1
$endgroup$
– Domo Jens
Jan 16 at 17:17












$begingroup$
The primitive function of $x^n$ is $frac{x^{n+1}}{n+1}$ !
$endgroup$
– S. Maths
Jan 16 at 17:22




$begingroup$
The primitive function of $x^n$ is $frac{x^{n+1}}{n+1}$ !
$endgroup$
– S. Maths
Jan 16 at 17:22












$begingroup$
thank you so much!
$endgroup$
– Domo Jens
Jan 16 at 19:18




$begingroup$
thank you so much!
$endgroup$
– Domo Jens
Jan 16 at 19:18


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075949%2fprove-that-cdot-1-and-cdot-2-are-not-equivalent-norms-on-c0-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅