Finding the sum of a specific alternating series
$begingroup$
The series $$sum_{n=1}^infty dfrac{(-1)^{n +1} (n+1)}{n!}$$ can be easily proven by using Leibniz's test to be convergent. But I am finding a problem in finding it's sum.
Some help is much required. Thank you
real-analysis calculus
$endgroup$
add a comment |
$begingroup$
The series $$sum_{n=1}^infty dfrac{(-1)^{n +1} (n+1)}{n!}$$ can be easily proven by using Leibniz's test to be convergent. But I am finding a problem in finding it's sum.
Some help is much required. Thank you
real-analysis calculus
$endgroup$
$begingroup$
Try breaking it into two sums.
$endgroup$
– saulspatz
Jan 16 at 15:10
add a comment |
$begingroup$
The series $$sum_{n=1}^infty dfrac{(-1)^{n +1} (n+1)}{n!}$$ can be easily proven by using Leibniz's test to be convergent. But I am finding a problem in finding it's sum.
Some help is much required. Thank you
real-analysis calculus
$endgroup$
The series $$sum_{n=1}^infty dfrac{(-1)^{n +1} (n+1)}{n!}$$ can be easily proven by using Leibniz's test to be convergent. But I am finding a problem in finding it's sum.
Some help is much required. Thank you
real-analysis calculus
real-analysis calculus
edited Jan 16 at 15:09
dame j
asked Jan 16 at 15:08
dame jdame j
19310
19310
$begingroup$
Try breaking it into two sums.
$endgroup$
– saulspatz
Jan 16 at 15:10
add a comment |
$begingroup$
Try breaking it into two sums.
$endgroup$
– saulspatz
Jan 16 at 15:10
$begingroup$
Try breaking it into two sums.
$endgroup$
– saulspatz
Jan 16 at 15:10
$begingroup$
Try breaking it into two sums.
$endgroup$
– saulspatz
Jan 16 at 15:10
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$(-1)^{n+1}cdotdfrac{n+1}{n!}=dfrac{(-1)^{n-1}}{(n-1)!}-dfrac{(-1)^n}{n!}=f(n-1)-f(n)$$
where $f(m)=dfrac{(-1)^m}{m!}$
See https://en.m.wikipedia.org/wiki/Telescoping_series
$endgroup$
add a comment |
$begingroup$
Note that, since all of the relevant sums converge absolutely
$$sumlimits_{i=1}^infty frac{(-1)^{n+1}(n+1)}{n!} = sumlimits_{i=1}^inftyleft(frac{(-1)^{n+1}}{(n-1)!} + frac{(-1)^{n+1}}{n!}right).$$
Notice that (again, since everything in sight converges absolutely) the second half of the $n$th term cancels with the first half of the $(n+1)$st term, so our sum telescopes to
$$frac{(-1)^2}{0!} = 1.$$
$endgroup$
add a comment |
$begingroup$
$
sum_{n=1}^{infty}frac{(-1)^{n+1}(n+1)}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}(n+2)}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=0}^{infty}frac{(-1)^{n}}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=1}^{infty}frac{(-1)^{n+1}}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}-sum_{n=1}^{infty}frac{(-1)^n}{n!}\
=1
$
$endgroup$
add a comment |
$begingroup$
Starting with
$$e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^n$$
Multiply by $x$
$$x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^{n+1}$$
Differentiate with respect to $x$
$$e^{-x}-x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{n+1}{n!} x^n = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
Now set $x=1$, with result
$$0 = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
so the sum is $1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075841%2ffinding-the-sum-of-a-specific-alternating-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$(-1)^{n+1}cdotdfrac{n+1}{n!}=dfrac{(-1)^{n-1}}{(n-1)!}-dfrac{(-1)^n}{n!}=f(n-1)-f(n)$$
where $f(m)=dfrac{(-1)^m}{m!}$
See https://en.m.wikipedia.org/wiki/Telescoping_series
$endgroup$
add a comment |
$begingroup$
$$(-1)^{n+1}cdotdfrac{n+1}{n!}=dfrac{(-1)^{n-1}}{(n-1)!}-dfrac{(-1)^n}{n!}=f(n-1)-f(n)$$
where $f(m)=dfrac{(-1)^m}{m!}$
See https://en.m.wikipedia.org/wiki/Telescoping_series
$endgroup$
add a comment |
$begingroup$
$$(-1)^{n+1}cdotdfrac{n+1}{n!}=dfrac{(-1)^{n-1}}{(n-1)!}-dfrac{(-1)^n}{n!}=f(n-1)-f(n)$$
where $f(m)=dfrac{(-1)^m}{m!}$
See https://en.m.wikipedia.org/wiki/Telescoping_series
$endgroup$
$$(-1)^{n+1}cdotdfrac{n+1}{n!}=dfrac{(-1)^{n-1}}{(n-1)!}-dfrac{(-1)^n}{n!}=f(n-1)-f(n)$$
where $f(m)=dfrac{(-1)^m}{m!}$
See https://en.m.wikipedia.org/wiki/Telescoping_series
answered Jan 16 at 15:12
lab bhattacharjeelab bhattacharjee
228k15158279
228k15158279
add a comment |
add a comment |
$begingroup$
Note that, since all of the relevant sums converge absolutely
$$sumlimits_{i=1}^infty frac{(-1)^{n+1}(n+1)}{n!} = sumlimits_{i=1}^inftyleft(frac{(-1)^{n+1}}{(n-1)!} + frac{(-1)^{n+1}}{n!}right).$$
Notice that (again, since everything in sight converges absolutely) the second half of the $n$th term cancels with the first half of the $(n+1)$st term, so our sum telescopes to
$$frac{(-1)^2}{0!} = 1.$$
$endgroup$
add a comment |
$begingroup$
Note that, since all of the relevant sums converge absolutely
$$sumlimits_{i=1}^infty frac{(-1)^{n+1}(n+1)}{n!} = sumlimits_{i=1}^inftyleft(frac{(-1)^{n+1}}{(n-1)!} + frac{(-1)^{n+1}}{n!}right).$$
Notice that (again, since everything in sight converges absolutely) the second half of the $n$th term cancels with the first half of the $(n+1)$st term, so our sum telescopes to
$$frac{(-1)^2}{0!} = 1.$$
$endgroup$
add a comment |
$begingroup$
Note that, since all of the relevant sums converge absolutely
$$sumlimits_{i=1}^infty frac{(-1)^{n+1}(n+1)}{n!} = sumlimits_{i=1}^inftyleft(frac{(-1)^{n+1}}{(n-1)!} + frac{(-1)^{n+1}}{n!}right).$$
Notice that (again, since everything in sight converges absolutely) the second half of the $n$th term cancels with the first half of the $(n+1)$st term, so our sum telescopes to
$$frac{(-1)^2}{0!} = 1.$$
$endgroup$
Note that, since all of the relevant sums converge absolutely
$$sumlimits_{i=1}^infty frac{(-1)^{n+1}(n+1)}{n!} = sumlimits_{i=1}^inftyleft(frac{(-1)^{n+1}}{(n-1)!} + frac{(-1)^{n+1}}{n!}right).$$
Notice that (again, since everything in sight converges absolutely) the second half of the $n$th term cancels with the first half of the $(n+1)$st term, so our sum telescopes to
$$frac{(-1)^2}{0!} = 1.$$
answered Jan 16 at 15:14
user3482749user3482749
4,3191119
4,3191119
add a comment |
add a comment |
$begingroup$
$
sum_{n=1}^{infty}frac{(-1)^{n+1}(n+1)}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}(n+2)}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=0}^{infty}frac{(-1)^{n}}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=1}^{infty}frac{(-1)^{n+1}}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}-sum_{n=1}^{infty}frac{(-1)^n}{n!}\
=1
$
$endgroup$
add a comment |
$begingroup$
$
sum_{n=1}^{infty}frac{(-1)^{n+1}(n+1)}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}(n+2)}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=0}^{infty}frac{(-1)^{n}}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=1}^{infty}frac{(-1)^{n+1}}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}-sum_{n=1}^{infty}frac{(-1)^n}{n!}\
=1
$
$endgroup$
add a comment |
$begingroup$
$
sum_{n=1}^{infty}frac{(-1)^{n+1}(n+1)}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}(n+2)}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=0}^{infty}frac{(-1)^{n}}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=1}^{infty}frac{(-1)^{n+1}}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}-sum_{n=1}^{infty}frac{(-1)^n}{n!}\
=1
$
$endgroup$
$
sum_{n=1}^{infty}frac{(-1)^{n+1}(n+1)}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}(n+2)}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=0}^{infty}frac{(-1)^{n}}{(n+1)!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}+sum_{n=1}^{infty}frac{(-1)^{n+1}}{n!}\
=sum_{n=0}^{infty}frac{(-1)^{n}}{n!}-sum_{n=1}^{infty}frac{(-1)^n}{n!}\
=1
$
answered Jan 16 at 15:30
Fei XuFei Xu
12
12
add a comment |
add a comment |
$begingroup$
Starting with
$$e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^n$$
Multiply by $x$
$$x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^{n+1}$$
Differentiate with respect to $x$
$$e^{-x}-x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{n+1}{n!} x^n = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
Now set $x=1$, with result
$$0 = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
so the sum is $1$.
$endgroup$
add a comment |
$begingroup$
Starting with
$$e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^n$$
Multiply by $x$
$$x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^{n+1}$$
Differentiate with respect to $x$
$$e^{-x}-x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{n+1}{n!} x^n = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
Now set $x=1$, with result
$$0 = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
so the sum is $1$.
$endgroup$
add a comment |
$begingroup$
Starting with
$$e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^n$$
Multiply by $x$
$$x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^{n+1}$$
Differentiate with respect to $x$
$$e^{-x}-x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{n+1}{n!} x^n = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
Now set $x=1$, with result
$$0 = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
so the sum is $1$.
$endgroup$
Starting with
$$e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^n$$
Multiply by $x$
$$x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{1}{n!} x^{n+1}$$
Differentiate with respect to $x$
$$e^{-x}-x e^{-x} = sum_{n=0}^{infty} (-1)^n frac{n+1}{n!} x^n = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
Now set $x=1$, with result
$$0 = 1 - sum_{n=1}^{infty} (-1)^{n+1} frac{n+1}{n!} x^n$$
so the sum is $1$.
answered Jan 16 at 21:32
awkwardawkward
6,82511026
6,82511026
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075841%2ffinding-the-sum-of-a-specific-alternating-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Try breaking it into two sums.
$endgroup$
– saulspatz
Jan 16 at 15:10