What is $dx$ in integration?
$begingroup$
When I was at school and learning integration in maths class at A Level my teacher wrote things like this on the board.
$$int f(x), dx$$
When he came to explain the meaning of the $dx$, he told us "think of it as a full stop". For whatever reason I did not raise my hand and question him about it. But I have always shaken my head at such a poor explanation for putting a $dx$ at the end of integration equations such as these. To this day I do not know the purpose of the $dx$. Can someone explain this to me without resorting to grammatical metaphors?
calculus infinitesimals
$endgroup$
|
show 2 more comments
$begingroup$
When I was at school and learning integration in maths class at A Level my teacher wrote things like this on the board.
$$int f(x), dx$$
When he came to explain the meaning of the $dx$, he told us "think of it as a full stop". For whatever reason I did not raise my hand and question him about it. But I have always shaken my head at such a poor explanation for putting a $dx$ at the end of integration equations such as these. To this day I do not know the purpose of the $dx$. Can someone explain this to me without resorting to grammatical metaphors?
calculus infinitesimals
$endgroup$
2
$begingroup$
This question is somewhat related and may be useful to you: math.stackexchange.com/questions/21199/is-dy-dx-not-a-ratio
$endgroup$
– Dane
Sep 21 '12 at 17:51
17
$begingroup$
Much of the math curriculum is designed for people who want to understand math, rather than for people whom one should be trying to seduce into understanding math. That's one of the reasons the teaching methods sometimes don't work well.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:03
8
$begingroup$
Well, it's a full stop.
$endgroup$
– artistoex
Sep 22 '12 at 0:57
14
$begingroup$
@Sachin, I sympathize. We need to put a "full stop" to this kind of teaching.
$endgroup$
– Mikhail Katz
Apr 9 '14 at 9:14
5
$begingroup$
@user72694 I completely agree. It's important for really understanding the notation to know that f(x)dx is the product of f(x) and dx, and represents an infinitesimally small area. The dx is not simply a notational delimiter for the end of the integrand (i.e. "full stop"), it's part of the integrand, part of the product being integrated.
$endgroup$
– Adam Smith
Aug 24 '14 at 20:18
|
show 2 more comments
$begingroup$
When I was at school and learning integration in maths class at A Level my teacher wrote things like this on the board.
$$int f(x), dx$$
When he came to explain the meaning of the $dx$, he told us "think of it as a full stop". For whatever reason I did not raise my hand and question him about it. But I have always shaken my head at such a poor explanation for putting a $dx$ at the end of integration equations such as these. To this day I do not know the purpose of the $dx$. Can someone explain this to me without resorting to grammatical metaphors?
calculus infinitesimals
$endgroup$
When I was at school and learning integration in maths class at A Level my teacher wrote things like this on the board.
$$int f(x), dx$$
When he came to explain the meaning of the $dx$, he told us "think of it as a full stop". For whatever reason I did not raise my hand and question him about it. But I have always shaken my head at such a poor explanation for putting a $dx$ at the end of integration equations such as these. To this day I do not know the purpose of the $dx$. Can someone explain this to me without resorting to grammatical metaphors?
calculus infinitesimals
calculus infinitesimals
edited Sep 17 '14 at 15:47
beep-boop
7,99952961
7,99952961
asked Sep 21 '12 at 17:35
Sachin KainthSachin Kainth
3,04051312
3,04051312
2
$begingroup$
This question is somewhat related and may be useful to you: math.stackexchange.com/questions/21199/is-dy-dx-not-a-ratio
$endgroup$
– Dane
Sep 21 '12 at 17:51
17
$begingroup$
Much of the math curriculum is designed for people who want to understand math, rather than for people whom one should be trying to seduce into understanding math. That's one of the reasons the teaching methods sometimes don't work well.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:03
8
$begingroup$
Well, it's a full stop.
$endgroup$
– artistoex
Sep 22 '12 at 0:57
14
$begingroup$
@Sachin, I sympathize. We need to put a "full stop" to this kind of teaching.
$endgroup$
– Mikhail Katz
Apr 9 '14 at 9:14
5
$begingroup$
@user72694 I completely agree. It's important for really understanding the notation to know that f(x)dx is the product of f(x) and dx, and represents an infinitesimally small area. The dx is not simply a notational delimiter for the end of the integrand (i.e. "full stop"), it's part of the integrand, part of the product being integrated.
$endgroup$
– Adam Smith
Aug 24 '14 at 20:18
|
show 2 more comments
2
$begingroup$
This question is somewhat related and may be useful to you: math.stackexchange.com/questions/21199/is-dy-dx-not-a-ratio
$endgroup$
– Dane
Sep 21 '12 at 17:51
17
$begingroup$
Much of the math curriculum is designed for people who want to understand math, rather than for people whom one should be trying to seduce into understanding math. That's one of the reasons the teaching methods sometimes don't work well.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:03
8
$begingroup$
Well, it's a full stop.
$endgroup$
– artistoex
Sep 22 '12 at 0:57
14
$begingroup$
@Sachin, I sympathize. We need to put a "full stop" to this kind of teaching.
$endgroup$
– Mikhail Katz
Apr 9 '14 at 9:14
5
$begingroup$
@user72694 I completely agree. It's important for really understanding the notation to know that f(x)dx is the product of f(x) and dx, and represents an infinitesimally small area. The dx is not simply a notational delimiter for the end of the integrand (i.e. "full stop"), it's part of the integrand, part of the product being integrated.
$endgroup$
– Adam Smith
Aug 24 '14 at 20:18
2
2
$begingroup$
This question is somewhat related and may be useful to you: math.stackexchange.com/questions/21199/is-dy-dx-not-a-ratio
$endgroup$
– Dane
Sep 21 '12 at 17:51
$begingroup$
This question is somewhat related and may be useful to you: math.stackexchange.com/questions/21199/is-dy-dx-not-a-ratio
$endgroup$
– Dane
Sep 21 '12 at 17:51
17
17
$begingroup$
Much of the math curriculum is designed for people who want to understand math, rather than for people whom one should be trying to seduce into understanding math. That's one of the reasons the teaching methods sometimes don't work well.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:03
$begingroup$
Much of the math curriculum is designed for people who want to understand math, rather than for people whom one should be trying to seduce into understanding math. That's one of the reasons the teaching methods sometimes don't work well.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:03
8
8
$begingroup$
Well, it's a full stop.
$endgroup$
– artistoex
Sep 22 '12 at 0:57
$begingroup$
Well, it's a full stop.
$endgroup$
– artistoex
Sep 22 '12 at 0:57
14
14
$begingroup$
@Sachin, I sympathize. We need to put a "full stop" to this kind of teaching.
$endgroup$
– Mikhail Katz
Apr 9 '14 at 9:14
$begingroup$
@Sachin, I sympathize. We need to put a "full stop" to this kind of teaching.
$endgroup$
– Mikhail Katz
Apr 9 '14 at 9:14
5
5
$begingroup$
@user72694 I completely agree. It's important for really understanding the notation to know that f(x)dx is the product of f(x) and dx, and represents an infinitesimally small area. The dx is not simply a notational delimiter for the end of the integrand (i.e. "full stop"), it's part of the integrand, part of the product being integrated.
$endgroup$
– Adam Smith
Aug 24 '14 at 20:18
$begingroup$
@user72694 I completely agree. It's important for really understanding the notation to know that f(x)dx is the product of f(x) and dx, and represents an infinitesimally small area. The dx is not simply a notational delimiter for the end of the integrand (i.e. "full stop"), it's part of the integrand, part of the product being integrated.
$endgroup$
– Adam Smith
Aug 24 '14 at 20:18
|
show 2 more comments
12 Answers
12
active
oldest
votes
$begingroup$
The motivation behind integration is to find the area under a curve. You do this, schematically, by breaking up the interval $[a, b]$ into little regions of width $Delta x$ and adding up the areas of the resulting rectangles. Here's an illustration from Wikipedia:
Then we want to make an identification along the lines of
$$sum_x f(x)Delta xapproxint_a^b f(x),dx,$$
where we take those rectangle widths to be vanishingly small and refer to them as $dx$.
$endgroup$
35
$begingroup$
The symbol used for integration, $int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $int_a^b f(x) dx = lim_{Delta x to 0} sum_{x=a}^{b} f(x)Delta x$; the limit of the Riemann sum of f(x) between a and b as the increment of X approaches zero (and thus the number of rectangles approaches infinity).
$endgroup$
– KeithS
Sep 21 '12 at 19:14
7
$begingroup$
$dx$ is the differential of the function $x$ which behaves $dy = frac{dy}{dx}dx$ under a change of coordinate.
$endgroup$
– Makoto Kato
Sep 21 '12 at 20:46
16
$begingroup$
This is a good explanation of the origin of the notation, but it doesn't quite explain why we bother to write it down. A big part of what the dx notation does is telling you the variable you're integrating over, and as a bonus parenthesizing the integrand. (The latter is probably why the teacher made the 'full stop' remark.)
$endgroup$
– Joren
Sep 21 '12 at 21:03
2
$begingroup$
I agree with @Joren that one of the most important parts is that it's telling you where you're taking those deltas from, in the case of dx, with respect to x.
$endgroup$
– ernie
Sep 21 '12 at 21:27
1
$begingroup$
Motivation for finite integration is area. I suggest editing the question since integration is very useful for anti-derivative which also there the dx indicates that we are integrating over x
$endgroup$
– raam86
Sep 21 '12 at 22:51
|
show 2 more comments
$begingroup$
There are multiple ways of explaing what the $dx$ means.
Practical explanation: It says we are integrating over variable $x$. If we were to integrate over variable $t$, we would write $dt$ instead, and so on.
Infinitesimal explanation: We can think of an integral as the limit of a sum: The area under the graph of a (positive) function $f$ can be approximated by the sum $sum_x f(x) Delta x$, and in the limit, we make $Delta x$ arbitrarily small and call it $dx$ (an "infinitesimal" quantity). Jonathan's answer explain that in detail.
Advanced explanation: In vector analysis, $dx$ takes meaning as a differential form (roughly, something that behaves like an infinitesimaly small piece of a curve).
$endgroup$
1
$begingroup$
Quite a good explanation
$endgroup$
– Barranka
Sep 21 '12 at 21:22
1
$begingroup$
Great answer. The second point is probably the most helpful to the OP, but the first and last are IMO just as good/important: differential forms are what really gives meaning to integrals for the general case (not necessarily just over intervals), and for the simple examples the part of bringing $x$ into scope is a very important conceptual thing.
$endgroup$
– leftaroundabout
Sep 23 '12 at 17:03
3
$begingroup$
However, isn't there another advanced meaning and that's that in the real analysis theory of Lebesgue integration, $dx$ is what's called a "measure", specifically the Lebesgue measure? The measure version is necessary when dealing with discontinuous functions.
$endgroup$
– The_Sympathizer
Jul 14 '14 at 1:31
1
$begingroup$
But for explanation B, the second one, when you look at it that way I don't understand what it means to write down the delta x. Is that like "sum of f(x)...with respect to changes in x"....? Isn't that the same as A?
$endgroup$
– temporary_user_name
Jun 17 '15 at 18:07
1
$begingroup$
@Aerovistae: The $Delta x$ describes the difference between consecutive values of $x$.
$endgroup$
– Johannes Kloos
Nov 14 '15 at 12:05
|
show 1 more comment
$begingroup$
Leibniz, who introduced this notation in the 17th century, thought of $dx$ as an infinitely small increment of $x$, and at least as a heuristic, that is an immensely useful idea.
However, note some other points:
- $displaystyleint f(x,y),dx$ differs from $displaystyleint f(x,y),dy$. In one case, one integrates a function of $x$, and $y$ is constant; in the other these roles are reversed and one might be integrating a very different function.
- If $f(x)$ is in meters per second and $dx$ is in seconds, then $f(x),dx$ is in meters, and so is the integral. These things should be dimensionally correct, and are not so without the "$dx$".
- Sometimes one has a dot-product or a cross-product or a matrix product or some other sort of product between $f(x)$ and $dx$. How would one specify that without the "$dx$" written there?
- When doing substitutions, it becomes important to distinguish between $dx$ and $du$, etc.
$endgroup$
9
$begingroup$
I like the dimensional analysis point you make here.
$endgroup$
– acjay
Sep 22 '12 at 6:58
1
$begingroup$
What do you mean by dimensionally correct?
$endgroup$
– Sachin Kainth
Oct 30 '12 at 17:19
1
$begingroup$
"Dimensionally correct" is a term used in physics. It means everything's measured in the right units. For example, suppose you know that an ampere is a coulomb per second and a volt is a joule per coulomb, and a watt is a joule per second. Then $mathrm{volt}cdotmathrm{amp}=mathrm{watt}$ because the coulombs cancel. Or $mathrm{second}cdotdfrac{mathrm{meter}}{mathrm{second}} = mathrm{meter}$. Or $dfrac{$6}{$2}= 3$ (with no "$$$") and $dfrac{$6}{2}=$3$ (with "$$$").
$endgroup$
– Michael Hardy
Oct 30 '12 at 19:42
$begingroup$
I think the second dot point is quite an interesting argument in favour of $dx$. However, I also think it would be clearer to write $f(t)$ and $dt$, or even $v(t)$. At the very least, having an $x$ there is a bit confusing, because the reader is expecting $x$ to mean a position in space, which it doesn't.
$endgroup$
– goblin
Sep 26 '17 at 3:07
$begingroup$
@goblin : Perhaps in some contexts that is true$,ldotsqquad$
$endgroup$
– Michael Hardy
Sep 26 '17 at 3:24
add a comment |
$begingroup$
Can someone explain this to me without resorting to grammatical metaphors?
It is a matter of grammar. The indefinite integral expression is a large expression organizing several pieces of information:
$$ color{blue}int color{red}{underline{quad}} color{green}d color{purple}{underline{quad}} $$
The blue $int$ is a symbol expressing that this is an integral expression. The rest of the expression is the integrand.
The integrand consists of three components: there is the green $d$ symbol. There is the purple slot on the right in which you place the name of the variable that you are integrating with respect to, and there is the red slot on the left in which you place the function expression you intend to integrate (with respect to the dummy variable).
There are other grammatical interpretations of integral expressions — most importantly (IMO) the notion of a "differential form" — but this is the one you are using in your introductory calculus class.
This particular grammatical form has some symbolism. It is a useful heuristic to think of a "$dx$" as a miniature variation in a function. You can extend this heuristic by imagining the integral to be "adding" up all of these miniature variations. The symbol $int$, I believe, originated as an elongated $S$, for "sum"; not dissimilar to the choice of sigma ($Sigma$) for summation expressions.
The notion of differential form is a very useful one you may be interested in learning more about. Unfortunately, I am not aware of any exposition that introduces it as applied to introductory calculus: it's usually only really introduced in a differential geometry course.
$endgroup$
7
$begingroup$
I don't agree that it's only grammar. Mathematicians' understanding of this has degenerated to the point where many of them think that's all it is. (See my answer posted here.)
$endgroup$
– Michael Hardy
Sep 21 '12 at 17:51
2
$begingroup$
@Michael: that is what it (overtly) is in elementary calculus. I really do believe differential form-like notation is a much better way to interpret it, but actually introducing the topic would be a far more ambitious answer. I do find it interesting that you object to me saying it's grammar, but your three bullet points are mostly issues of syntax... your third point especially.
$endgroup$
– Hurkyl
Sep 21 '12 at 17:58
1
$begingroup$
Definitely I would not introduce differential forms in first-year calculus. My first bullet point perhaps could be called "grammar". My point about dimensional correctness is not just grammar. Nor do I agree that my third point is "grammar".
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:01
2
$begingroup$
@MichaelHardy: When I first studied calculus in university I found it incredibly confusing that people just talked about $mathrm{d}x$ as if it was some kind of object or variable you can use in normal calculations. Especially the physicists did that when using the total derivative. It really makes no sense until you define every single operation correctly and no introductory textbook that I know of does this. So, for freshmen, the grammar explanation may help to avoid frustration (it did for me).
$endgroup$
– Gregor Botero
Sep 21 '12 at 18:08
2
$begingroup$
But one need not follow the textbook in all details.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:15
|
show 3 more comments
$begingroup$
The $dx$ can be given various concrete meanings, none of which one can sensibly explain to someone first learning about integrals. It is, in reality, just a notation which comes to use from the originators of calculus, motivated by the ideas behind Jonathan's answer.
Today, the $dx$ serves the purpose of delimiting the integrand (although the physicists, rebellious as ever, like to write $intmathrm d xf(x)$ for what we write $int f(x)mathrm dx$...) and of making explicit the variable respect to which we are computing the integral (this s useful in situations like $int f(x,y)mathrm dx$, which is usually different from $int f(x,y)mathrm d y$)
As for concrete mathematical meanings: the $mathrm dx$ can mean concretely all sort of things: the Lebesgue measure, a differential form, a density, and a few others. It would be impossible to explain what any of these mean to a student first encountering integrals!
$endgroup$
1
$begingroup$
It is quite common, too, to write simply $int f(x)$, by the way: this is possible only when this does not introduce any ambiguities (and unless the integrand is an actual formula, it is much better to write $int f$...)
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:52
$begingroup$
An advantage of the notation $int f(x)mathrm dx$ is that it can be read out quite directly as «the integral of $f$ with respect to $x$», without having to add much.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:53
$begingroup$
Instead of the short version $int f(x)$ I prefer the even shorter version $int f$, where I don't have any "dangling" $x$.
$endgroup$
– Hendrik Vogt
Sep 22 '12 at 8:00
3
$begingroup$
The advantage of writing $mathrm dx$ at the beginning is that for nested integrals with limits, it's more easily seen which limits belong to which variable, compare $int_1^2mathrm dxint_3^4mathrm dy,f(x^2+g(x,y))h(x+y-3)$ with $int_1^2int_3^4 f(x^2+g(x,y))h(x+y-3),mathrm dy,mathrm dx$
$endgroup$
– celtschk
Sep 22 '12 at 9:48
3
$begingroup$
Playing loose with the use of $dx$ as bracket is not exclusive to physics: who hasn't written something like $int frac{dx}{x}$ before?
$endgroup$
– Erick Wong
Sep 25 '12 at 18:35
|
show 1 more comment
$begingroup$
Historically, calculus was framed in terms of infinitesimally small numbers. The Leibniz notation dy/dx was originally intended to mean, literally, the division of two infinitesimals. The Leibniz notation $int f dx$ was meant to indicate a sum of infinitely many rectangles, each with infinitesimal width dx. (The integral sign $int$ is an "S" for "sum.") Note that the factor $dx$ in the integral is needed in order to make the units come out right. For example, if you're calculating mechanical work as $W=int F dx$, the units wouldn't be newton-meters if you didn't have the factor of $dx$, which has units of meters.
In the 19th century, mathematicians got uneasy about infinitesimals. They were afraid that a system of mathematics based on infinitesimals could not be developed in a fully rigorous and consistent way. Therefore, they rebuilt the foundations of calculus using limits, but they kept the Leibniz notation, which is extremely useful and practical. In this approach, $W=int F dx$ stands for a limit of Riemann sums of rectangles with finite widths $Delta x$, and the $dx$ becomes an archaism.
Around 1960, Abraham Robinson showed that it was possible to have calculus built on a foundation of infinitesimals, and that no inconsistency would result (unless there was an inconsistency that would also affect the real number system itself, which nobody thinks is the case). Therefore it's legitimate to think of integrals and derivatives in essentially the same way that Newton and Leibniz originally conceived of them -- in fact, scientists and engineers never actually stopped thinking about them that way.
$endgroup$
2
$begingroup$
It is legitimate to think that provided one knows how to do it properly —which most people do not!
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:54
3
$begingroup$
@MarianoSuárez-Alvarez: All professional scientists and engineers know how to do it properly. They just don't know how to justify their practices in terms of NSA, or how to systematize their practices in detail. They have a set of techniques for manipulating infinitesimals. These techniques worked for Leibniz and Euler, and have worked for everyone since then, and that practitioners never stopped using.
$endgroup$
– Ben Crowell
Sep 21 '12 at 20:20
2
$begingroup$
Well, I have certainly seen people make mistakes —specially people who are just stating with calculus (which is the context of the OP, as one should not forget) In any case, that Robinson managed to formalize is completely orthogonal to the fact that all those people you mention do manage to work successfully...: they could probably not care less for that formalization and would probably not be able to understand it anyways.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 21:34
3
$begingroup$
@MarianoSuárez-Alvarez: "they could probably not care less for that formalization and would probably not be able to understand it anyways." There is nothing that difficult or esoteric about NSA. Keisler did a very nice freshman calc book using it: math.wisc.edu/~keisler/calc.html
$endgroup$
– Ben Crowell
Sep 22 '12 at 0:08
2
$begingroup$
I know it can be done. The majority of those "professional scientists and engineers" you mentioned, though, have not been exposed to NSA, nor probably want to be!
$endgroup$
– Mariano Suárez-Álvarez
Sep 22 '12 at 0:14
add a comment |
$begingroup$
I once went at some length illustrating the point that for the purpose of evaluating integrals it is useful to look at $d$ as a linear operator.
$endgroup$
5
$begingroup$
thanks for -1, any hints on improvement?
$endgroup$
– Valentin
Oct 4 '12 at 18:02
1
$begingroup$
Answer is pretty terse, if you don't go on at length here it's not obviously useful, just sounds like you felt like sprinkling in an anecdote.
$endgroup$
– Joseph Garvin
Oct 3 '17 at 2:33
add a comment |
$begingroup$
Of course for something as simple as $int{f(x)}dx$, you dont have to write $dx$ if you don't feel like it, and in many situations you are allowed to just write $int{f}$, although I don't personally make a habit of it.
These things you ask about are not merely some convenient book-keeping device to let us know where the end of the intergral is, they are called differential forms, and you can add and multiply them together.
The algebra of differential forms follow naturally from the simple rule that $dx^2=0$ because this rule actually implies another very important rule, namely that $dxwedge dy=-dywedge dx$, or in other words, that differential forms commute anti-symmetrically, see here for more info.
$endgroup$
add a comment |
$begingroup$
I did the exact same question to myself and I give you the answer at which I arrived or how I see this.
Ok, let's see. The meaning of $dx$ on $textit{definite}$ integrals is quite clear (as has been pointed out in other answers), it's the limit when the length element goes to $0$, so when writing $int_0^1{}x^2dx$ the $dx$ has a clear meaning.
We know that $textit{indefinite}$ integrals, or the anti-derivatives, can be used via calculus' fundamental theorem to calculate definite integrals, so one could think at this point that we write $dx$ while doing anti-derivatives because of the "closeness" of definite and indefinite integrals and that the $dx$ in $int{}x^2dx$ does really have no other meaning than full stop.
But that's not the whole story. Truth is that the $dx$ is a "handy" way for changing variables (which is really useful doing integrals).
Imagine you wanna get the anti-derivative of $w(x)$. Since you wanna get the anti-derivative, this function is (you hope) a derivative of some (actually infinite but that is not important now) function, so you wanna integrate
$w(x)=f'(x)$
$f(x)$ IS what you wanna get.
Imagine also that you are incompetent enough not to know how to do this. So, in order to solve this you decide you wanna try changing variables, hoping that this will clear the mess and you will be more competent integrating respect to the new variable.
You proceed along this line defining the new variable
$xequiv{}g(m)$ and $f(x)equiv{}h(m)$
This is important, if we would be able to get $h(m)$ reversing the variable change we'd get $f(x)$ and the problem would be solved.
So you try out the new variable in hopes of getting $h'(m)$ from $f'(x)$ in hopes of being able to carry out the integration on $h'(m)$
$f'(x)=f'(x=g(m))=h'(m)m'(x)$
and remembering $m'(x)=frac{dm}{dx}$ and rearranging terms
$f'(x)dx=h'(m)dm$
And know it is clear why the $dx$ is useful. Multiplying it with $f(x)$ makes the variables "ordered" after variable change and you easily get $h'(m)$ from $f'(x)$ which is what you wanted.
So you see, when doing variable change the $dx$ is something that helps you find the integrand respect to the new variable, and hence, it is written from the beginnig because it is expected that you will have to carry out variable changes and then you will need it.
So summarizing. It actually means full stop or absolutely nothing, but you will (probably) need it so write it and pretend not to see it until you need it.
$endgroup$
add a comment |
$begingroup$
An integral gives you the area between the horizontal axis
and the curve. Most of the time this is the x axis.
y
| |
--|-- ----|---- f(x)
/ | / |
/ | -------- |
| / | |
-----|------- | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is:
Area = $int^b_a f(x) dx$
But say you didn't want to use an integral to measure the
area between the x axis and the curve. Instead you just
caclulate the average value of the graph between a and b
and draw a striaght flat line y = avg(x) (the average
value of x in that range).
Now you have a graph like this:
y
| |
- | - - - | - - f(x)
| / | / |
-----|-----------------------------------|---- avg(x)
| / | |
- - -|- - - - | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is a rectangle:
Area = avg(x) w where w is the width iof the section
The height is avg(x) and the width is w = b-a or in English,
"the width of a slice of the x axis going from a to b."
But say you need a more accurate area. You could break the
graph up into smaller sections and make rectangles out of them.
Say you make 4 equal sections:
y
| |
|----|---| |-------|---- f(x)
| | | | |
| | |--------| |
| | | | | |
-----|---------| | | | |
| | | | | |
| | | | | |
----------|---------|----+---|--------|-------|----- x
a b
And the area is:
Area = section 1 + section 2 + section 3 + section 4
= avg(x,1) w + avg(x,2) w + avg(x,3) w + avg(x,4) w
where w is the width of each section. The sections are all
the same size, so in this case w=(b-a)/4 or in English,
"the width of a thin slice of the x axis or 1/4 of the
width from a to b."
And if we write this with a sumation we get:
Area = $sum^4_{n=1}avg(x,n) w$
But it's still not accurate enough. Let's use
an infinite number of sections. Now our area
becomes a summation of an infinite number of sections.
Since it's an infinite sum, we will use the
integral sign instead of the summation sign:
Area = $int avg(x) w$
where avg(x) for an infinitely thin section will be
equal to f(x) in that section, and w will be "the width of
an infinitely thin section of the x axis."
So instead of avg(x) we can write f(x), because they are
the same if the average is taken over an infinitely small width.
And we can rename the w variable to anything we want.
The width of a section is the difference between the
right side and the left side. The difference between
two points is often called the delta of those values.
So the difference of two x values (like a and b) would
be called delta-x. But that is too long to use in an
equation, so when we have an infinitely small delta,
it is shortened to dx.
If we replace avg(x) and w with these equivalent things:
Area = $int f(x) dx$
So what the equation says is:
Area equals the sum of an infinite number of rectangles
that are f(x) high and dx wide (where dx is an infinitely
small distance).
So you need the dx because otherwise you aren't summing
up rectangles and your answer wouldn't be total area.
dx literally means "an infinitely small width of x".
It even means this in derivatives. A derivative of
a function is the slope of the graph at that point.
Slope is usually measured as the y difference of two
points divided by the x difference of those points:
Slope = (y2 - y1) / (x2 - x1)
But the closer these points get the smaller these
differences get. Let's start calling them deltas,
because the difference between two points is often
called the delta of those values.
Slope = delta-y / delta-x
The deltas get smaller and smaller as these two x,y
points get closer and closer. When they are an
infinitely small distance apart, then the delta-y
and delta-x is shortened to dy and dx:
Slope = dy / dx
The slope is still Slope = (y2 - y1) / (x2 - x1)
but these points are infinitely close together, so
we use dy and dx to tell ourselves that they are
infinitely close or "differential distances."
$endgroup$
2
$begingroup$
Ayush, I appreciate your effort, but! you have used quite informal approach. What you are explaining is definite integral(One should explain both definite and indefinite integral). Honestly speaking you are explaining quite non-rigorously. You have just skipped the explanation of the Limit. "Area equals the sum of an infinite number of rectangles" - A more appropriate(and technically correct) way to say this is: "Total Area equals to the limit of the sum of the areas of $n$ individual rectangles of width $Delta x$ s.t. $Delta xto 0$ and $n to infty$"
$endgroup$
– user103816
May 26 '14 at 7:34
add a comment |
$begingroup$
The reason why dx is added to after the integrand is as follows:
Say, that dy/dx = f(x).
Then, dy= f(x) * dx.
So, y= int (f(x)*dx)
Therefore the dx has to be part of the expression if y is to be calculated.
$endgroup$
add a comment |
$begingroup$
Before taking calculus, your teacher ought to have taught you about the limits of functions. Otherwise calculus would be impossible to understand in the context of algebra and geometry. I strongly recommend "Teach Yourself Calculus" by P. Abbott. Old editions from 1960s are available on Amazon secondhand. (Please do NOT get the 'new' version by a chap called O'Neill - this is just a revenue hijack, as far as I can see.)
After getting a good handle on limits of functions, you'll soon see how
$$ lim_{Delta x to 0}{frac{Delta y}{Delta x}} = frac{dy}{dx}$$
$endgroup$
add a comment |
protected by Saad Sep 28 '18 at 14:52
Thank you for your interest in this question.
Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).
Would you like to answer one of these unanswered questions instead?
12 Answers
12
active
oldest
votes
12 Answers
12
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The motivation behind integration is to find the area under a curve. You do this, schematically, by breaking up the interval $[a, b]$ into little regions of width $Delta x$ and adding up the areas of the resulting rectangles. Here's an illustration from Wikipedia:
Then we want to make an identification along the lines of
$$sum_x f(x)Delta xapproxint_a^b f(x),dx,$$
where we take those rectangle widths to be vanishingly small and refer to them as $dx$.
$endgroup$
35
$begingroup$
The symbol used for integration, $int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $int_a^b f(x) dx = lim_{Delta x to 0} sum_{x=a}^{b} f(x)Delta x$; the limit of the Riemann sum of f(x) between a and b as the increment of X approaches zero (and thus the number of rectangles approaches infinity).
$endgroup$
– KeithS
Sep 21 '12 at 19:14
7
$begingroup$
$dx$ is the differential of the function $x$ which behaves $dy = frac{dy}{dx}dx$ under a change of coordinate.
$endgroup$
– Makoto Kato
Sep 21 '12 at 20:46
16
$begingroup$
This is a good explanation of the origin of the notation, but it doesn't quite explain why we bother to write it down. A big part of what the dx notation does is telling you the variable you're integrating over, and as a bonus parenthesizing the integrand. (The latter is probably why the teacher made the 'full stop' remark.)
$endgroup$
– Joren
Sep 21 '12 at 21:03
2
$begingroup$
I agree with @Joren that one of the most important parts is that it's telling you where you're taking those deltas from, in the case of dx, with respect to x.
$endgroup$
– ernie
Sep 21 '12 at 21:27
1
$begingroup$
Motivation for finite integration is area. I suggest editing the question since integration is very useful for anti-derivative which also there the dx indicates that we are integrating over x
$endgroup$
– raam86
Sep 21 '12 at 22:51
|
show 2 more comments
$begingroup$
The motivation behind integration is to find the area under a curve. You do this, schematically, by breaking up the interval $[a, b]$ into little regions of width $Delta x$ and adding up the areas of the resulting rectangles. Here's an illustration from Wikipedia:
Then we want to make an identification along the lines of
$$sum_x f(x)Delta xapproxint_a^b f(x),dx,$$
where we take those rectangle widths to be vanishingly small and refer to them as $dx$.
$endgroup$
35
$begingroup$
The symbol used for integration, $int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $int_a^b f(x) dx = lim_{Delta x to 0} sum_{x=a}^{b} f(x)Delta x$; the limit of the Riemann sum of f(x) between a and b as the increment of X approaches zero (and thus the number of rectangles approaches infinity).
$endgroup$
– KeithS
Sep 21 '12 at 19:14
7
$begingroup$
$dx$ is the differential of the function $x$ which behaves $dy = frac{dy}{dx}dx$ under a change of coordinate.
$endgroup$
– Makoto Kato
Sep 21 '12 at 20:46
16
$begingroup$
This is a good explanation of the origin of the notation, but it doesn't quite explain why we bother to write it down. A big part of what the dx notation does is telling you the variable you're integrating over, and as a bonus parenthesizing the integrand. (The latter is probably why the teacher made the 'full stop' remark.)
$endgroup$
– Joren
Sep 21 '12 at 21:03
2
$begingroup$
I agree with @Joren that one of the most important parts is that it's telling you where you're taking those deltas from, in the case of dx, with respect to x.
$endgroup$
– ernie
Sep 21 '12 at 21:27
1
$begingroup$
Motivation for finite integration is area. I suggest editing the question since integration is very useful for anti-derivative which also there the dx indicates that we are integrating over x
$endgroup$
– raam86
Sep 21 '12 at 22:51
|
show 2 more comments
$begingroup$
The motivation behind integration is to find the area under a curve. You do this, schematically, by breaking up the interval $[a, b]$ into little regions of width $Delta x$ and adding up the areas of the resulting rectangles. Here's an illustration from Wikipedia:
Then we want to make an identification along the lines of
$$sum_x f(x)Delta xapproxint_a^b f(x),dx,$$
where we take those rectangle widths to be vanishingly small and refer to them as $dx$.
$endgroup$
The motivation behind integration is to find the area under a curve. You do this, schematically, by breaking up the interval $[a, b]$ into little regions of width $Delta x$ and adding up the areas of the resulting rectangles. Here's an illustration from Wikipedia:
Then we want to make an identification along the lines of
$$sum_x f(x)Delta xapproxint_a^b f(x),dx,$$
where we take those rectangle widths to be vanishingly small and refer to them as $dx$.
answered Sep 21 '12 at 17:42
JonathanJonathan
6,79511533
6,79511533
35
$begingroup$
The symbol used for integration, $int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $int_a^b f(x) dx = lim_{Delta x to 0} sum_{x=a}^{b} f(x)Delta x$; the limit of the Riemann sum of f(x) between a and b as the increment of X approaches zero (and thus the number of rectangles approaches infinity).
$endgroup$
– KeithS
Sep 21 '12 at 19:14
7
$begingroup$
$dx$ is the differential of the function $x$ which behaves $dy = frac{dy}{dx}dx$ under a change of coordinate.
$endgroup$
– Makoto Kato
Sep 21 '12 at 20:46
16
$begingroup$
This is a good explanation of the origin of the notation, but it doesn't quite explain why we bother to write it down. A big part of what the dx notation does is telling you the variable you're integrating over, and as a bonus parenthesizing the integrand. (The latter is probably why the teacher made the 'full stop' remark.)
$endgroup$
– Joren
Sep 21 '12 at 21:03
2
$begingroup$
I agree with @Joren that one of the most important parts is that it's telling you where you're taking those deltas from, in the case of dx, with respect to x.
$endgroup$
– ernie
Sep 21 '12 at 21:27
1
$begingroup$
Motivation for finite integration is area. I suggest editing the question since integration is very useful for anti-derivative which also there the dx indicates that we are integrating over x
$endgroup$
– raam86
Sep 21 '12 at 22:51
|
show 2 more comments
35
$begingroup$
The symbol used for integration, $int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $int_a^b f(x) dx = lim_{Delta x to 0} sum_{x=a}^{b} f(x)Delta x$; the limit of the Riemann sum of f(x) between a and b as the increment of X approaches zero (and thus the number of rectangles approaches infinity).
$endgroup$
– KeithS
Sep 21 '12 at 19:14
7
$begingroup$
$dx$ is the differential of the function $x$ which behaves $dy = frac{dy}{dx}dx$ under a change of coordinate.
$endgroup$
– Makoto Kato
Sep 21 '12 at 20:46
16
$begingroup$
This is a good explanation of the origin of the notation, but it doesn't quite explain why we bother to write it down. A big part of what the dx notation does is telling you the variable you're integrating over, and as a bonus parenthesizing the integrand. (The latter is probably why the teacher made the 'full stop' remark.)
$endgroup$
– Joren
Sep 21 '12 at 21:03
2
$begingroup$
I agree with @Joren that one of the most important parts is that it's telling you where you're taking those deltas from, in the case of dx, with respect to x.
$endgroup$
– ernie
Sep 21 '12 at 21:27
1
$begingroup$
Motivation for finite integration is area. I suggest editing the question since integration is very useful for anti-derivative which also there the dx indicates that we are integrating over x
$endgroup$
– raam86
Sep 21 '12 at 22:51
35
35
$begingroup$
The symbol used for integration, $int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $int_a^b f(x) dx = lim_{Delta x to 0} sum_{x=a}^{b} f(x)Delta x$; the limit of the Riemann sum of f(x) between a and b as the increment of X approaches zero (and thus the number of rectangles approaches infinity).
$endgroup$
– KeithS
Sep 21 '12 at 19:14
$begingroup$
The symbol used for integration, $int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $int_a^b f(x) dx = lim_{Delta x to 0} sum_{x=a}^{b} f(x)Delta x$; the limit of the Riemann sum of f(x) between a and b as the increment of X approaches zero (and thus the number of rectangles approaches infinity).
$endgroup$
– KeithS
Sep 21 '12 at 19:14
7
7
$begingroup$
$dx$ is the differential of the function $x$ which behaves $dy = frac{dy}{dx}dx$ under a change of coordinate.
$endgroup$
– Makoto Kato
Sep 21 '12 at 20:46
$begingroup$
$dx$ is the differential of the function $x$ which behaves $dy = frac{dy}{dx}dx$ under a change of coordinate.
$endgroup$
– Makoto Kato
Sep 21 '12 at 20:46
16
16
$begingroup$
This is a good explanation of the origin of the notation, but it doesn't quite explain why we bother to write it down. A big part of what the dx notation does is telling you the variable you're integrating over, and as a bonus parenthesizing the integrand. (The latter is probably why the teacher made the 'full stop' remark.)
$endgroup$
– Joren
Sep 21 '12 at 21:03
$begingroup$
This is a good explanation of the origin of the notation, but it doesn't quite explain why we bother to write it down. A big part of what the dx notation does is telling you the variable you're integrating over, and as a bonus parenthesizing the integrand. (The latter is probably why the teacher made the 'full stop' remark.)
$endgroup$
– Joren
Sep 21 '12 at 21:03
2
2
$begingroup$
I agree with @Joren that one of the most important parts is that it's telling you where you're taking those deltas from, in the case of dx, with respect to x.
$endgroup$
– ernie
Sep 21 '12 at 21:27
$begingroup$
I agree with @Joren that one of the most important parts is that it's telling you where you're taking those deltas from, in the case of dx, with respect to x.
$endgroup$
– ernie
Sep 21 '12 at 21:27
1
1
$begingroup$
Motivation for finite integration is area. I suggest editing the question since integration is very useful for anti-derivative which also there the dx indicates that we are integrating over x
$endgroup$
– raam86
Sep 21 '12 at 22:51
$begingroup$
Motivation for finite integration is area. I suggest editing the question since integration is very useful for anti-derivative which also there the dx indicates that we are integrating over x
$endgroup$
– raam86
Sep 21 '12 at 22:51
|
show 2 more comments
$begingroup$
There are multiple ways of explaing what the $dx$ means.
Practical explanation: It says we are integrating over variable $x$. If we were to integrate over variable $t$, we would write $dt$ instead, and so on.
Infinitesimal explanation: We can think of an integral as the limit of a sum: The area under the graph of a (positive) function $f$ can be approximated by the sum $sum_x f(x) Delta x$, and in the limit, we make $Delta x$ arbitrarily small and call it $dx$ (an "infinitesimal" quantity). Jonathan's answer explain that in detail.
Advanced explanation: In vector analysis, $dx$ takes meaning as a differential form (roughly, something that behaves like an infinitesimaly small piece of a curve).
$endgroup$
1
$begingroup$
Quite a good explanation
$endgroup$
– Barranka
Sep 21 '12 at 21:22
1
$begingroup$
Great answer. The second point is probably the most helpful to the OP, but the first and last are IMO just as good/important: differential forms are what really gives meaning to integrals for the general case (not necessarily just over intervals), and for the simple examples the part of bringing $x$ into scope is a very important conceptual thing.
$endgroup$
– leftaroundabout
Sep 23 '12 at 17:03
3
$begingroup$
However, isn't there another advanced meaning and that's that in the real analysis theory of Lebesgue integration, $dx$ is what's called a "measure", specifically the Lebesgue measure? The measure version is necessary when dealing with discontinuous functions.
$endgroup$
– The_Sympathizer
Jul 14 '14 at 1:31
1
$begingroup$
But for explanation B, the second one, when you look at it that way I don't understand what it means to write down the delta x. Is that like "sum of f(x)...with respect to changes in x"....? Isn't that the same as A?
$endgroup$
– temporary_user_name
Jun 17 '15 at 18:07
1
$begingroup$
@Aerovistae: The $Delta x$ describes the difference between consecutive values of $x$.
$endgroup$
– Johannes Kloos
Nov 14 '15 at 12:05
|
show 1 more comment
$begingroup$
There are multiple ways of explaing what the $dx$ means.
Practical explanation: It says we are integrating over variable $x$. If we were to integrate over variable $t$, we would write $dt$ instead, and so on.
Infinitesimal explanation: We can think of an integral as the limit of a sum: The area under the graph of a (positive) function $f$ can be approximated by the sum $sum_x f(x) Delta x$, and in the limit, we make $Delta x$ arbitrarily small and call it $dx$ (an "infinitesimal" quantity). Jonathan's answer explain that in detail.
Advanced explanation: In vector analysis, $dx$ takes meaning as a differential form (roughly, something that behaves like an infinitesimaly small piece of a curve).
$endgroup$
1
$begingroup$
Quite a good explanation
$endgroup$
– Barranka
Sep 21 '12 at 21:22
1
$begingroup$
Great answer. The second point is probably the most helpful to the OP, but the first and last are IMO just as good/important: differential forms are what really gives meaning to integrals for the general case (not necessarily just over intervals), and for the simple examples the part of bringing $x$ into scope is a very important conceptual thing.
$endgroup$
– leftaroundabout
Sep 23 '12 at 17:03
3
$begingroup$
However, isn't there another advanced meaning and that's that in the real analysis theory of Lebesgue integration, $dx$ is what's called a "measure", specifically the Lebesgue measure? The measure version is necessary when dealing with discontinuous functions.
$endgroup$
– The_Sympathizer
Jul 14 '14 at 1:31
1
$begingroup$
But for explanation B, the second one, when you look at it that way I don't understand what it means to write down the delta x. Is that like "sum of f(x)...with respect to changes in x"....? Isn't that the same as A?
$endgroup$
– temporary_user_name
Jun 17 '15 at 18:07
1
$begingroup$
@Aerovistae: The $Delta x$ describes the difference between consecutive values of $x$.
$endgroup$
– Johannes Kloos
Nov 14 '15 at 12:05
|
show 1 more comment
$begingroup$
There are multiple ways of explaing what the $dx$ means.
Practical explanation: It says we are integrating over variable $x$. If we were to integrate over variable $t$, we would write $dt$ instead, and so on.
Infinitesimal explanation: We can think of an integral as the limit of a sum: The area under the graph of a (positive) function $f$ can be approximated by the sum $sum_x f(x) Delta x$, and in the limit, we make $Delta x$ arbitrarily small and call it $dx$ (an "infinitesimal" quantity). Jonathan's answer explain that in detail.
Advanced explanation: In vector analysis, $dx$ takes meaning as a differential form (roughly, something that behaves like an infinitesimaly small piece of a curve).
$endgroup$
There are multiple ways of explaing what the $dx$ means.
Practical explanation: It says we are integrating over variable $x$. If we were to integrate over variable $t$, we would write $dt$ instead, and so on.
Infinitesimal explanation: We can think of an integral as the limit of a sum: The area under the graph of a (positive) function $f$ can be approximated by the sum $sum_x f(x) Delta x$, and in the limit, we make $Delta x$ arbitrarily small and call it $dx$ (an "infinitesimal" quantity). Jonathan's answer explain that in detail.
Advanced explanation: In vector analysis, $dx$ takes meaning as a differential form (roughly, something that behaves like an infinitesimaly small piece of a curve).
answered Sep 21 '12 at 17:45
Johannes KloosJohannes Kloos
6,75811941
6,75811941
1
$begingroup$
Quite a good explanation
$endgroup$
– Barranka
Sep 21 '12 at 21:22
1
$begingroup$
Great answer. The second point is probably the most helpful to the OP, but the first and last are IMO just as good/important: differential forms are what really gives meaning to integrals for the general case (not necessarily just over intervals), and for the simple examples the part of bringing $x$ into scope is a very important conceptual thing.
$endgroup$
– leftaroundabout
Sep 23 '12 at 17:03
3
$begingroup$
However, isn't there another advanced meaning and that's that in the real analysis theory of Lebesgue integration, $dx$ is what's called a "measure", specifically the Lebesgue measure? The measure version is necessary when dealing with discontinuous functions.
$endgroup$
– The_Sympathizer
Jul 14 '14 at 1:31
1
$begingroup$
But for explanation B, the second one, when you look at it that way I don't understand what it means to write down the delta x. Is that like "sum of f(x)...with respect to changes in x"....? Isn't that the same as A?
$endgroup$
– temporary_user_name
Jun 17 '15 at 18:07
1
$begingroup$
@Aerovistae: The $Delta x$ describes the difference between consecutive values of $x$.
$endgroup$
– Johannes Kloos
Nov 14 '15 at 12:05
|
show 1 more comment
1
$begingroup$
Quite a good explanation
$endgroup$
– Barranka
Sep 21 '12 at 21:22
1
$begingroup$
Great answer. The second point is probably the most helpful to the OP, but the first and last are IMO just as good/important: differential forms are what really gives meaning to integrals for the general case (not necessarily just over intervals), and for the simple examples the part of bringing $x$ into scope is a very important conceptual thing.
$endgroup$
– leftaroundabout
Sep 23 '12 at 17:03
3
$begingroup$
However, isn't there another advanced meaning and that's that in the real analysis theory of Lebesgue integration, $dx$ is what's called a "measure", specifically the Lebesgue measure? The measure version is necessary when dealing with discontinuous functions.
$endgroup$
– The_Sympathizer
Jul 14 '14 at 1:31
1
$begingroup$
But for explanation B, the second one, when you look at it that way I don't understand what it means to write down the delta x. Is that like "sum of f(x)...with respect to changes in x"....? Isn't that the same as A?
$endgroup$
– temporary_user_name
Jun 17 '15 at 18:07
1
$begingroup$
@Aerovistae: The $Delta x$ describes the difference between consecutive values of $x$.
$endgroup$
– Johannes Kloos
Nov 14 '15 at 12:05
1
1
$begingroup$
Quite a good explanation
$endgroup$
– Barranka
Sep 21 '12 at 21:22
$begingroup$
Quite a good explanation
$endgroup$
– Barranka
Sep 21 '12 at 21:22
1
1
$begingroup$
Great answer. The second point is probably the most helpful to the OP, but the first and last are IMO just as good/important: differential forms are what really gives meaning to integrals for the general case (not necessarily just over intervals), and for the simple examples the part of bringing $x$ into scope is a very important conceptual thing.
$endgroup$
– leftaroundabout
Sep 23 '12 at 17:03
$begingroup$
Great answer. The second point is probably the most helpful to the OP, but the first and last are IMO just as good/important: differential forms are what really gives meaning to integrals for the general case (not necessarily just over intervals), and for the simple examples the part of bringing $x$ into scope is a very important conceptual thing.
$endgroup$
– leftaroundabout
Sep 23 '12 at 17:03
3
3
$begingroup$
However, isn't there another advanced meaning and that's that in the real analysis theory of Lebesgue integration, $dx$ is what's called a "measure", specifically the Lebesgue measure? The measure version is necessary when dealing with discontinuous functions.
$endgroup$
– The_Sympathizer
Jul 14 '14 at 1:31
$begingroup$
However, isn't there another advanced meaning and that's that in the real analysis theory of Lebesgue integration, $dx$ is what's called a "measure", specifically the Lebesgue measure? The measure version is necessary when dealing with discontinuous functions.
$endgroup$
– The_Sympathizer
Jul 14 '14 at 1:31
1
1
$begingroup$
But for explanation B, the second one, when you look at it that way I don't understand what it means to write down the delta x. Is that like "sum of f(x)...with respect to changes in x"....? Isn't that the same as A?
$endgroup$
– temporary_user_name
Jun 17 '15 at 18:07
$begingroup$
But for explanation B, the second one, when you look at it that way I don't understand what it means to write down the delta x. Is that like "sum of f(x)...with respect to changes in x"....? Isn't that the same as A?
$endgroup$
– temporary_user_name
Jun 17 '15 at 18:07
1
1
$begingroup$
@Aerovistae: The $Delta x$ describes the difference between consecutive values of $x$.
$endgroup$
– Johannes Kloos
Nov 14 '15 at 12:05
$begingroup$
@Aerovistae: The $Delta x$ describes the difference between consecutive values of $x$.
$endgroup$
– Johannes Kloos
Nov 14 '15 at 12:05
|
show 1 more comment
$begingroup$
Leibniz, who introduced this notation in the 17th century, thought of $dx$ as an infinitely small increment of $x$, and at least as a heuristic, that is an immensely useful idea.
However, note some other points:
- $displaystyleint f(x,y),dx$ differs from $displaystyleint f(x,y),dy$. In one case, one integrates a function of $x$, and $y$ is constant; in the other these roles are reversed and one might be integrating a very different function.
- If $f(x)$ is in meters per second and $dx$ is in seconds, then $f(x),dx$ is in meters, and so is the integral. These things should be dimensionally correct, and are not so without the "$dx$".
- Sometimes one has a dot-product or a cross-product or a matrix product or some other sort of product between $f(x)$ and $dx$. How would one specify that without the "$dx$" written there?
- When doing substitutions, it becomes important to distinguish between $dx$ and $du$, etc.
$endgroup$
9
$begingroup$
I like the dimensional analysis point you make here.
$endgroup$
– acjay
Sep 22 '12 at 6:58
1
$begingroup$
What do you mean by dimensionally correct?
$endgroup$
– Sachin Kainth
Oct 30 '12 at 17:19
1
$begingroup$
"Dimensionally correct" is a term used in physics. It means everything's measured in the right units. For example, suppose you know that an ampere is a coulomb per second and a volt is a joule per coulomb, and a watt is a joule per second. Then $mathrm{volt}cdotmathrm{amp}=mathrm{watt}$ because the coulombs cancel. Or $mathrm{second}cdotdfrac{mathrm{meter}}{mathrm{second}} = mathrm{meter}$. Or $dfrac{$6}{$2}= 3$ (with no "$$$") and $dfrac{$6}{2}=$3$ (with "$$$").
$endgroup$
– Michael Hardy
Oct 30 '12 at 19:42
$begingroup$
I think the second dot point is quite an interesting argument in favour of $dx$. However, I also think it would be clearer to write $f(t)$ and $dt$, or even $v(t)$. At the very least, having an $x$ there is a bit confusing, because the reader is expecting $x$ to mean a position in space, which it doesn't.
$endgroup$
– goblin
Sep 26 '17 at 3:07
$begingroup$
@goblin : Perhaps in some contexts that is true$,ldotsqquad$
$endgroup$
– Michael Hardy
Sep 26 '17 at 3:24
add a comment |
$begingroup$
Leibniz, who introduced this notation in the 17th century, thought of $dx$ as an infinitely small increment of $x$, and at least as a heuristic, that is an immensely useful idea.
However, note some other points:
- $displaystyleint f(x,y),dx$ differs from $displaystyleint f(x,y),dy$. In one case, one integrates a function of $x$, and $y$ is constant; in the other these roles are reversed and one might be integrating a very different function.
- If $f(x)$ is in meters per second and $dx$ is in seconds, then $f(x),dx$ is in meters, and so is the integral. These things should be dimensionally correct, and are not so without the "$dx$".
- Sometimes one has a dot-product or a cross-product or a matrix product or some other sort of product between $f(x)$ and $dx$. How would one specify that without the "$dx$" written there?
- When doing substitutions, it becomes important to distinguish between $dx$ and $du$, etc.
$endgroup$
9
$begingroup$
I like the dimensional analysis point you make here.
$endgroup$
– acjay
Sep 22 '12 at 6:58
1
$begingroup$
What do you mean by dimensionally correct?
$endgroup$
– Sachin Kainth
Oct 30 '12 at 17:19
1
$begingroup$
"Dimensionally correct" is a term used in physics. It means everything's measured in the right units. For example, suppose you know that an ampere is a coulomb per second and a volt is a joule per coulomb, and a watt is a joule per second. Then $mathrm{volt}cdotmathrm{amp}=mathrm{watt}$ because the coulombs cancel. Or $mathrm{second}cdotdfrac{mathrm{meter}}{mathrm{second}} = mathrm{meter}$. Or $dfrac{$6}{$2}= 3$ (with no "$$$") and $dfrac{$6}{2}=$3$ (with "$$$").
$endgroup$
– Michael Hardy
Oct 30 '12 at 19:42
$begingroup$
I think the second dot point is quite an interesting argument in favour of $dx$. However, I also think it would be clearer to write $f(t)$ and $dt$, or even $v(t)$. At the very least, having an $x$ there is a bit confusing, because the reader is expecting $x$ to mean a position in space, which it doesn't.
$endgroup$
– goblin
Sep 26 '17 at 3:07
$begingroup$
@goblin : Perhaps in some contexts that is true$,ldotsqquad$
$endgroup$
– Michael Hardy
Sep 26 '17 at 3:24
add a comment |
$begingroup$
Leibniz, who introduced this notation in the 17th century, thought of $dx$ as an infinitely small increment of $x$, and at least as a heuristic, that is an immensely useful idea.
However, note some other points:
- $displaystyleint f(x,y),dx$ differs from $displaystyleint f(x,y),dy$. In one case, one integrates a function of $x$, and $y$ is constant; in the other these roles are reversed and one might be integrating a very different function.
- If $f(x)$ is in meters per second and $dx$ is in seconds, then $f(x),dx$ is in meters, and so is the integral. These things should be dimensionally correct, and are not so without the "$dx$".
- Sometimes one has a dot-product or a cross-product or a matrix product or some other sort of product between $f(x)$ and $dx$. How would one specify that without the "$dx$" written there?
- When doing substitutions, it becomes important to distinguish between $dx$ and $du$, etc.
$endgroup$
Leibniz, who introduced this notation in the 17th century, thought of $dx$ as an infinitely small increment of $x$, and at least as a heuristic, that is an immensely useful idea.
However, note some other points:
- $displaystyleint f(x,y),dx$ differs from $displaystyleint f(x,y),dy$. In one case, one integrates a function of $x$, and $y$ is constant; in the other these roles are reversed and one might be integrating a very different function.
- If $f(x)$ is in meters per second and $dx$ is in seconds, then $f(x),dx$ is in meters, and so is the integral. These things should be dimensionally correct, and are not so without the "$dx$".
- Sometimes one has a dot-product or a cross-product or a matrix product or some other sort of product between $f(x)$ and $dx$. How would one specify that without the "$dx$" written there?
- When doing substitutions, it becomes important to distinguish between $dx$ and $du$, etc.
edited Sep 21 '12 at 18:16
answered Sep 21 '12 at 17:50
Michael HardyMichael Hardy
1
1
9
$begingroup$
I like the dimensional analysis point you make here.
$endgroup$
– acjay
Sep 22 '12 at 6:58
1
$begingroup$
What do you mean by dimensionally correct?
$endgroup$
– Sachin Kainth
Oct 30 '12 at 17:19
1
$begingroup$
"Dimensionally correct" is a term used in physics. It means everything's measured in the right units. For example, suppose you know that an ampere is a coulomb per second and a volt is a joule per coulomb, and a watt is a joule per second. Then $mathrm{volt}cdotmathrm{amp}=mathrm{watt}$ because the coulombs cancel. Or $mathrm{second}cdotdfrac{mathrm{meter}}{mathrm{second}} = mathrm{meter}$. Or $dfrac{$6}{$2}= 3$ (with no "$$$") and $dfrac{$6}{2}=$3$ (with "$$$").
$endgroup$
– Michael Hardy
Oct 30 '12 at 19:42
$begingroup$
I think the second dot point is quite an interesting argument in favour of $dx$. However, I also think it would be clearer to write $f(t)$ and $dt$, or even $v(t)$. At the very least, having an $x$ there is a bit confusing, because the reader is expecting $x$ to mean a position in space, which it doesn't.
$endgroup$
– goblin
Sep 26 '17 at 3:07
$begingroup$
@goblin : Perhaps in some contexts that is true$,ldotsqquad$
$endgroup$
– Michael Hardy
Sep 26 '17 at 3:24
add a comment |
9
$begingroup$
I like the dimensional analysis point you make here.
$endgroup$
– acjay
Sep 22 '12 at 6:58
1
$begingroup$
What do you mean by dimensionally correct?
$endgroup$
– Sachin Kainth
Oct 30 '12 at 17:19
1
$begingroup$
"Dimensionally correct" is a term used in physics. It means everything's measured in the right units. For example, suppose you know that an ampere is a coulomb per second and a volt is a joule per coulomb, and a watt is a joule per second. Then $mathrm{volt}cdotmathrm{amp}=mathrm{watt}$ because the coulombs cancel. Or $mathrm{second}cdotdfrac{mathrm{meter}}{mathrm{second}} = mathrm{meter}$. Or $dfrac{$6}{$2}= 3$ (with no "$$$") and $dfrac{$6}{2}=$3$ (with "$$$").
$endgroup$
– Michael Hardy
Oct 30 '12 at 19:42
$begingroup$
I think the second dot point is quite an interesting argument in favour of $dx$. However, I also think it would be clearer to write $f(t)$ and $dt$, or even $v(t)$. At the very least, having an $x$ there is a bit confusing, because the reader is expecting $x$ to mean a position in space, which it doesn't.
$endgroup$
– goblin
Sep 26 '17 at 3:07
$begingroup$
@goblin : Perhaps in some contexts that is true$,ldotsqquad$
$endgroup$
– Michael Hardy
Sep 26 '17 at 3:24
9
9
$begingroup$
I like the dimensional analysis point you make here.
$endgroup$
– acjay
Sep 22 '12 at 6:58
$begingroup$
I like the dimensional analysis point you make here.
$endgroup$
– acjay
Sep 22 '12 at 6:58
1
1
$begingroup$
What do you mean by dimensionally correct?
$endgroup$
– Sachin Kainth
Oct 30 '12 at 17:19
$begingroup$
What do you mean by dimensionally correct?
$endgroup$
– Sachin Kainth
Oct 30 '12 at 17:19
1
1
$begingroup$
"Dimensionally correct" is a term used in physics. It means everything's measured in the right units. For example, suppose you know that an ampere is a coulomb per second and a volt is a joule per coulomb, and a watt is a joule per second. Then $mathrm{volt}cdotmathrm{amp}=mathrm{watt}$ because the coulombs cancel. Or $mathrm{second}cdotdfrac{mathrm{meter}}{mathrm{second}} = mathrm{meter}$. Or $dfrac{$6}{$2}= 3$ (with no "$$$") and $dfrac{$6}{2}=$3$ (with "$$$").
$endgroup$
– Michael Hardy
Oct 30 '12 at 19:42
$begingroup$
"Dimensionally correct" is a term used in physics. It means everything's measured in the right units. For example, suppose you know that an ampere is a coulomb per second and a volt is a joule per coulomb, and a watt is a joule per second. Then $mathrm{volt}cdotmathrm{amp}=mathrm{watt}$ because the coulombs cancel. Or $mathrm{second}cdotdfrac{mathrm{meter}}{mathrm{second}} = mathrm{meter}$. Or $dfrac{$6}{$2}= 3$ (with no "$$$") and $dfrac{$6}{2}=$3$ (with "$$$").
$endgroup$
– Michael Hardy
Oct 30 '12 at 19:42
$begingroup$
I think the second dot point is quite an interesting argument in favour of $dx$. However, I also think it would be clearer to write $f(t)$ and $dt$, or even $v(t)$. At the very least, having an $x$ there is a bit confusing, because the reader is expecting $x$ to mean a position in space, which it doesn't.
$endgroup$
– goblin
Sep 26 '17 at 3:07
$begingroup$
I think the second dot point is quite an interesting argument in favour of $dx$. However, I also think it would be clearer to write $f(t)$ and $dt$, or even $v(t)$. At the very least, having an $x$ there is a bit confusing, because the reader is expecting $x$ to mean a position in space, which it doesn't.
$endgroup$
– goblin
Sep 26 '17 at 3:07
$begingroup$
@goblin : Perhaps in some contexts that is true$,ldotsqquad$
$endgroup$
– Michael Hardy
Sep 26 '17 at 3:24
$begingroup$
@goblin : Perhaps in some contexts that is true$,ldotsqquad$
$endgroup$
– Michael Hardy
Sep 26 '17 at 3:24
add a comment |
$begingroup$
Can someone explain this to me without resorting to grammatical metaphors?
It is a matter of grammar. The indefinite integral expression is a large expression organizing several pieces of information:
$$ color{blue}int color{red}{underline{quad}} color{green}d color{purple}{underline{quad}} $$
The blue $int$ is a symbol expressing that this is an integral expression. The rest of the expression is the integrand.
The integrand consists of three components: there is the green $d$ symbol. There is the purple slot on the right in which you place the name of the variable that you are integrating with respect to, and there is the red slot on the left in which you place the function expression you intend to integrate (with respect to the dummy variable).
There are other grammatical interpretations of integral expressions — most importantly (IMO) the notion of a "differential form" — but this is the one you are using in your introductory calculus class.
This particular grammatical form has some symbolism. It is a useful heuristic to think of a "$dx$" as a miniature variation in a function. You can extend this heuristic by imagining the integral to be "adding" up all of these miniature variations. The symbol $int$, I believe, originated as an elongated $S$, for "sum"; not dissimilar to the choice of sigma ($Sigma$) for summation expressions.
The notion of differential form is a very useful one you may be interested in learning more about. Unfortunately, I am not aware of any exposition that introduces it as applied to introductory calculus: it's usually only really introduced in a differential geometry course.
$endgroup$
7
$begingroup$
I don't agree that it's only grammar. Mathematicians' understanding of this has degenerated to the point where many of them think that's all it is. (See my answer posted here.)
$endgroup$
– Michael Hardy
Sep 21 '12 at 17:51
2
$begingroup$
@Michael: that is what it (overtly) is in elementary calculus. I really do believe differential form-like notation is a much better way to interpret it, but actually introducing the topic would be a far more ambitious answer. I do find it interesting that you object to me saying it's grammar, but your three bullet points are mostly issues of syntax... your third point especially.
$endgroup$
– Hurkyl
Sep 21 '12 at 17:58
1
$begingroup$
Definitely I would not introduce differential forms in first-year calculus. My first bullet point perhaps could be called "grammar". My point about dimensional correctness is not just grammar. Nor do I agree that my third point is "grammar".
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:01
2
$begingroup$
@MichaelHardy: When I first studied calculus in university I found it incredibly confusing that people just talked about $mathrm{d}x$ as if it was some kind of object or variable you can use in normal calculations. Especially the physicists did that when using the total derivative. It really makes no sense until you define every single operation correctly and no introductory textbook that I know of does this. So, for freshmen, the grammar explanation may help to avoid frustration (it did for me).
$endgroup$
– Gregor Botero
Sep 21 '12 at 18:08
2
$begingroup$
But one need not follow the textbook in all details.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:15
|
show 3 more comments
$begingroup$
Can someone explain this to me without resorting to grammatical metaphors?
It is a matter of grammar. The indefinite integral expression is a large expression organizing several pieces of information:
$$ color{blue}int color{red}{underline{quad}} color{green}d color{purple}{underline{quad}} $$
The blue $int$ is a symbol expressing that this is an integral expression. The rest of the expression is the integrand.
The integrand consists of three components: there is the green $d$ symbol. There is the purple slot on the right in which you place the name of the variable that you are integrating with respect to, and there is the red slot on the left in which you place the function expression you intend to integrate (with respect to the dummy variable).
There are other grammatical interpretations of integral expressions — most importantly (IMO) the notion of a "differential form" — but this is the one you are using in your introductory calculus class.
This particular grammatical form has some symbolism. It is a useful heuristic to think of a "$dx$" as a miniature variation in a function. You can extend this heuristic by imagining the integral to be "adding" up all of these miniature variations. The symbol $int$, I believe, originated as an elongated $S$, for "sum"; not dissimilar to the choice of sigma ($Sigma$) for summation expressions.
The notion of differential form is a very useful one you may be interested in learning more about. Unfortunately, I am not aware of any exposition that introduces it as applied to introductory calculus: it's usually only really introduced in a differential geometry course.
$endgroup$
7
$begingroup$
I don't agree that it's only grammar. Mathematicians' understanding of this has degenerated to the point where many of them think that's all it is. (See my answer posted here.)
$endgroup$
– Michael Hardy
Sep 21 '12 at 17:51
2
$begingroup$
@Michael: that is what it (overtly) is in elementary calculus. I really do believe differential form-like notation is a much better way to interpret it, but actually introducing the topic would be a far more ambitious answer. I do find it interesting that you object to me saying it's grammar, but your three bullet points are mostly issues of syntax... your third point especially.
$endgroup$
– Hurkyl
Sep 21 '12 at 17:58
1
$begingroup$
Definitely I would not introduce differential forms in first-year calculus. My first bullet point perhaps could be called "grammar". My point about dimensional correctness is not just grammar. Nor do I agree that my third point is "grammar".
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:01
2
$begingroup$
@MichaelHardy: When I first studied calculus in university I found it incredibly confusing that people just talked about $mathrm{d}x$ as if it was some kind of object or variable you can use in normal calculations. Especially the physicists did that when using the total derivative. It really makes no sense until you define every single operation correctly and no introductory textbook that I know of does this. So, for freshmen, the grammar explanation may help to avoid frustration (it did for me).
$endgroup$
– Gregor Botero
Sep 21 '12 at 18:08
2
$begingroup$
But one need not follow the textbook in all details.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:15
|
show 3 more comments
$begingroup$
Can someone explain this to me without resorting to grammatical metaphors?
It is a matter of grammar. The indefinite integral expression is a large expression organizing several pieces of information:
$$ color{blue}int color{red}{underline{quad}} color{green}d color{purple}{underline{quad}} $$
The blue $int$ is a symbol expressing that this is an integral expression. The rest of the expression is the integrand.
The integrand consists of three components: there is the green $d$ symbol. There is the purple slot on the right in which you place the name of the variable that you are integrating with respect to, and there is the red slot on the left in which you place the function expression you intend to integrate (with respect to the dummy variable).
There are other grammatical interpretations of integral expressions — most importantly (IMO) the notion of a "differential form" — but this is the one you are using in your introductory calculus class.
This particular grammatical form has some symbolism. It is a useful heuristic to think of a "$dx$" as a miniature variation in a function. You can extend this heuristic by imagining the integral to be "adding" up all of these miniature variations. The symbol $int$, I believe, originated as an elongated $S$, for "sum"; not dissimilar to the choice of sigma ($Sigma$) for summation expressions.
The notion of differential form is a very useful one you may be interested in learning more about. Unfortunately, I am not aware of any exposition that introduces it as applied to introductory calculus: it's usually only really introduced in a differential geometry course.
$endgroup$
Can someone explain this to me without resorting to grammatical metaphors?
It is a matter of grammar. The indefinite integral expression is a large expression organizing several pieces of information:
$$ color{blue}int color{red}{underline{quad}} color{green}d color{purple}{underline{quad}} $$
The blue $int$ is a symbol expressing that this is an integral expression. The rest of the expression is the integrand.
The integrand consists of three components: there is the green $d$ symbol. There is the purple slot on the right in which you place the name of the variable that you are integrating with respect to, and there is the red slot on the left in which you place the function expression you intend to integrate (with respect to the dummy variable).
There are other grammatical interpretations of integral expressions — most importantly (IMO) the notion of a "differential form" — but this is the one you are using in your introductory calculus class.
This particular grammatical form has some symbolism. It is a useful heuristic to think of a "$dx$" as a miniature variation in a function. You can extend this heuristic by imagining the integral to be "adding" up all of these miniature variations. The symbol $int$, I believe, originated as an elongated $S$, for "sum"; not dissimilar to the choice of sigma ($Sigma$) for summation expressions.
The notion of differential form is a very useful one you may be interested in learning more about. Unfortunately, I am not aware of any exposition that introduces it as applied to introductory calculus: it's usually only really introduced in a differential geometry course.
edited Sep 26 '17 at 2:02
answered Sep 21 '12 at 17:49
HurkylHurkyl
112k9120262
112k9120262
7
$begingroup$
I don't agree that it's only grammar. Mathematicians' understanding of this has degenerated to the point where many of them think that's all it is. (See my answer posted here.)
$endgroup$
– Michael Hardy
Sep 21 '12 at 17:51
2
$begingroup$
@Michael: that is what it (overtly) is in elementary calculus. I really do believe differential form-like notation is a much better way to interpret it, but actually introducing the topic would be a far more ambitious answer. I do find it interesting that you object to me saying it's grammar, but your three bullet points are mostly issues of syntax... your third point especially.
$endgroup$
– Hurkyl
Sep 21 '12 at 17:58
1
$begingroup$
Definitely I would not introduce differential forms in first-year calculus. My first bullet point perhaps could be called "grammar". My point about dimensional correctness is not just grammar. Nor do I agree that my third point is "grammar".
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:01
2
$begingroup$
@MichaelHardy: When I first studied calculus in university I found it incredibly confusing that people just talked about $mathrm{d}x$ as if it was some kind of object or variable you can use in normal calculations. Especially the physicists did that when using the total derivative. It really makes no sense until you define every single operation correctly and no introductory textbook that I know of does this. So, for freshmen, the grammar explanation may help to avoid frustration (it did for me).
$endgroup$
– Gregor Botero
Sep 21 '12 at 18:08
2
$begingroup$
But one need not follow the textbook in all details.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:15
|
show 3 more comments
7
$begingroup$
I don't agree that it's only grammar. Mathematicians' understanding of this has degenerated to the point where many of them think that's all it is. (See my answer posted here.)
$endgroup$
– Michael Hardy
Sep 21 '12 at 17:51
2
$begingroup$
@Michael: that is what it (overtly) is in elementary calculus. I really do believe differential form-like notation is a much better way to interpret it, but actually introducing the topic would be a far more ambitious answer. I do find it interesting that you object to me saying it's grammar, but your three bullet points are mostly issues of syntax... your third point especially.
$endgroup$
– Hurkyl
Sep 21 '12 at 17:58
1
$begingroup$
Definitely I would not introduce differential forms in first-year calculus. My first bullet point perhaps could be called "grammar". My point about dimensional correctness is not just grammar. Nor do I agree that my third point is "grammar".
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:01
2
$begingroup$
@MichaelHardy: When I first studied calculus in university I found it incredibly confusing that people just talked about $mathrm{d}x$ as if it was some kind of object or variable you can use in normal calculations. Especially the physicists did that when using the total derivative. It really makes no sense until you define every single operation correctly and no introductory textbook that I know of does this. So, for freshmen, the grammar explanation may help to avoid frustration (it did for me).
$endgroup$
– Gregor Botero
Sep 21 '12 at 18:08
2
$begingroup$
But one need not follow the textbook in all details.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:15
7
7
$begingroup$
I don't agree that it's only grammar. Mathematicians' understanding of this has degenerated to the point where many of them think that's all it is. (See my answer posted here.)
$endgroup$
– Michael Hardy
Sep 21 '12 at 17:51
$begingroup$
I don't agree that it's only grammar. Mathematicians' understanding of this has degenerated to the point where many of them think that's all it is. (See my answer posted here.)
$endgroup$
– Michael Hardy
Sep 21 '12 at 17:51
2
2
$begingroup$
@Michael: that is what it (overtly) is in elementary calculus. I really do believe differential form-like notation is a much better way to interpret it, but actually introducing the topic would be a far more ambitious answer. I do find it interesting that you object to me saying it's grammar, but your three bullet points are mostly issues of syntax... your third point especially.
$endgroup$
– Hurkyl
Sep 21 '12 at 17:58
$begingroup$
@Michael: that is what it (overtly) is in elementary calculus. I really do believe differential form-like notation is a much better way to interpret it, but actually introducing the topic would be a far more ambitious answer. I do find it interesting that you object to me saying it's grammar, but your three bullet points are mostly issues of syntax... your third point especially.
$endgroup$
– Hurkyl
Sep 21 '12 at 17:58
1
1
$begingroup$
Definitely I would not introduce differential forms in first-year calculus. My first bullet point perhaps could be called "grammar". My point about dimensional correctness is not just grammar. Nor do I agree that my third point is "grammar".
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:01
$begingroup$
Definitely I would not introduce differential forms in first-year calculus. My first bullet point perhaps could be called "grammar". My point about dimensional correctness is not just grammar. Nor do I agree that my third point is "grammar".
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:01
2
2
$begingroup$
@MichaelHardy: When I first studied calculus in university I found it incredibly confusing that people just talked about $mathrm{d}x$ as if it was some kind of object or variable you can use in normal calculations. Especially the physicists did that when using the total derivative. It really makes no sense until you define every single operation correctly and no introductory textbook that I know of does this. So, for freshmen, the grammar explanation may help to avoid frustration (it did for me).
$endgroup$
– Gregor Botero
Sep 21 '12 at 18:08
$begingroup$
@MichaelHardy: When I first studied calculus in university I found it incredibly confusing that people just talked about $mathrm{d}x$ as if it was some kind of object or variable you can use in normal calculations. Especially the physicists did that when using the total derivative. It really makes no sense until you define every single operation correctly and no introductory textbook that I know of does this. So, for freshmen, the grammar explanation may help to avoid frustration (it did for me).
$endgroup$
– Gregor Botero
Sep 21 '12 at 18:08
2
2
$begingroup$
But one need not follow the textbook in all details.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:15
$begingroup$
But one need not follow the textbook in all details.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:15
|
show 3 more comments
$begingroup$
The $dx$ can be given various concrete meanings, none of which one can sensibly explain to someone first learning about integrals. It is, in reality, just a notation which comes to use from the originators of calculus, motivated by the ideas behind Jonathan's answer.
Today, the $dx$ serves the purpose of delimiting the integrand (although the physicists, rebellious as ever, like to write $intmathrm d xf(x)$ for what we write $int f(x)mathrm dx$...) and of making explicit the variable respect to which we are computing the integral (this s useful in situations like $int f(x,y)mathrm dx$, which is usually different from $int f(x,y)mathrm d y$)
As for concrete mathematical meanings: the $mathrm dx$ can mean concretely all sort of things: the Lebesgue measure, a differential form, a density, and a few others. It would be impossible to explain what any of these mean to a student first encountering integrals!
$endgroup$
1
$begingroup$
It is quite common, too, to write simply $int f(x)$, by the way: this is possible only when this does not introduce any ambiguities (and unless the integrand is an actual formula, it is much better to write $int f$...)
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:52
$begingroup$
An advantage of the notation $int f(x)mathrm dx$ is that it can be read out quite directly as «the integral of $f$ with respect to $x$», without having to add much.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:53
$begingroup$
Instead of the short version $int f(x)$ I prefer the even shorter version $int f$, where I don't have any "dangling" $x$.
$endgroup$
– Hendrik Vogt
Sep 22 '12 at 8:00
3
$begingroup$
The advantage of writing $mathrm dx$ at the beginning is that for nested integrals with limits, it's more easily seen which limits belong to which variable, compare $int_1^2mathrm dxint_3^4mathrm dy,f(x^2+g(x,y))h(x+y-3)$ with $int_1^2int_3^4 f(x^2+g(x,y))h(x+y-3),mathrm dy,mathrm dx$
$endgroup$
– celtschk
Sep 22 '12 at 9:48
3
$begingroup$
Playing loose with the use of $dx$ as bracket is not exclusive to physics: who hasn't written something like $int frac{dx}{x}$ before?
$endgroup$
– Erick Wong
Sep 25 '12 at 18:35
|
show 1 more comment
$begingroup$
The $dx$ can be given various concrete meanings, none of which one can sensibly explain to someone first learning about integrals. It is, in reality, just a notation which comes to use from the originators of calculus, motivated by the ideas behind Jonathan's answer.
Today, the $dx$ serves the purpose of delimiting the integrand (although the physicists, rebellious as ever, like to write $intmathrm d xf(x)$ for what we write $int f(x)mathrm dx$...) and of making explicit the variable respect to which we are computing the integral (this s useful in situations like $int f(x,y)mathrm dx$, which is usually different from $int f(x,y)mathrm d y$)
As for concrete mathematical meanings: the $mathrm dx$ can mean concretely all sort of things: the Lebesgue measure, a differential form, a density, and a few others. It would be impossible to explain what any of these mean to a student first encountering integrals!
$endgroup$
1
$begingroup$
It is quite common, too, to write simply $int f(x)$, by the way: this is possible only when this does not introduce any ambiguities (and unless the integrand is an actual formula, it is much better to write $int f$...)
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:52
$begingroup$
An advantage of the notation $int f(x)mathrm dx$ is that it can be read out quite directly as «the integral of $f$ with respect to $x$», without having to add much.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:53
$begingroup$
Instead of the short version $int f(x)$ I prefer the even shorter version $int f$, where I don't have any "dangling" $x$.
$endgroup$
– Hendrik Vogt
Sep 22 '12 at 8:00
3
$begingroup$
The advantage of writing $mathrm dx$ at the beginning is that for nested integrals with limits, it's more easily seen which limits belong to which variable, compare $int_1^2mathrm dxint_3^4mathrm dy,f(x^2+g(x,y))h(x+y-3)$ with $int_1^2int_3^4 f(x^2+g(x,y))h(x+y-3),mathrm dy,mathrm dx$
$endgroup$
– celtschk
Sep 22 '12 at 9:48
3
$begingroup$
Playing loose with the use of $dx$ as bracket is not exclusive to physics: who hasn't written something like $int frac{dx}{x}$ before?
$endgroup$
– Erick Wong
Sep 25 '12 at 18:35
|
show 1 more comment
$begingroup$
The $dx$ can be given various concrete meanings, none of which one can sensibly explain to someone first learning about integrals. It is, in reality, just a notation which comes to use from the originators of calculus, motivated by the ideas behind Jonathan's answer.
Today, the $dx$ serves the purpose of delimiting the integrand (although the physicists, rebellious as ever, like to write $intmathrm d xf(x)$ for what we write $int f(x)mathrm dx$...) and of making explicit the variable respect to which we are computing the integral (this s useful in situations like $int f(x,y)mathrm dx$, which is usually different from $int f(x,y)mathrm d y$)
As for concrete mathematical meanings: the $mathrm dx$ can mean concretely all sort of things: the Lebesgue measure, a differential form, a density, and a few others. It would be impossible to explain what any of these mean to a student first encountering integrals!
$endgroup$
The $dx$ can be given various concrete meanings, none of which one can sensibly explain to someone first learning about integrals. It is, in reality, just a notation which comes to use from the originators of calculus, motivated by the ideas behind Jonathan's answer.
Today, the $dx$ serves the purpose of delimiting the integrand (although the physicists, rebellious as ever, like to write $intmathrm d xf(x)$ for what we write $int f(x)mathrm dx$...) and of making explicit the variable respect to which we are computing the integral (this s useful in situations like $int f(x,y)mathrm dx$, which is usually different from $int f(x,y)mathrm d y$)
As for concrete mathematical meanings: the $mathrm dx$ can mean concretely all sort of things: the Lebesgue measure, a differential form, a density, and a few others. It would be impossible to explain what any of these mean to a student first encountering integrals!
edited Sep 21 '12 at 17:56
answered Sep 21 '12 at 17:50
Mariano Suárez-ÁlvarezMariano Suárez-Álvarez
111k7157288
111k7157288
1
$begingroup$
It is quite common, too, to write simply $int f(x)$, by the way: this is possible only when this does not introduce any ambiguities (and unless the integrand is an actual formula, it is much better to write $int f$...)
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:52
$begingroup$
An advantage of the notation $int f(x)mathrm dx$ is that it can be read out quite directly as «the integral of $f$ with respect to $x$», without having to add much.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:53
$begingroup$
Instead of the short version $int f(x)$ I prefer the even shorter version $int f$, where I don't have any "dangling" $x$.
$endgroup$
– Hendrik Vogt
Sep 22 '12 at 8:00
3
$begingroup$
The advantage of writing $mathrm dx$ at the beginning is that for nested integrals with limits, it's more easily seen which limits belong to which variable, compare $int_1^2mathrm dxint_3^4mathrm dy,f(x^2+g(x,y))h(x+y-3)$ with $int_1^2int_3^4 f(x^2+g(x,y))h(x+y-3),mathrm dy,mathrm dx$
$endgroup$
– celtschk
Sep 22 '12 at 9:48
3
$begingroup$
Playing loose with the use of $dx$ as bracket is not exclusive to physics: who hasn't written something like $int frac{dx}{x}$ before?
$endgroup$
– Erick Wong
Sep 25 '12 at 18:35
|
show 1 more comment
1
$begingroup$
It is quite common, too, to write simply $int f(x)$, by the way: this is possible only when this does not introduce any ambiguities (and unless the integrand is an actual formula, it is much better to write $int f$...)
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:52
$begingroup$
An advantage of the notation $int f(x)mathrm dx$ is that it can be read out quite directly as «the integral of $f$ with respect to $x$», without having to add much.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:53
$begingroup$
Instead of the short version $int f(x)$ I prefer the even shorter version $int f$, where I don't have any "dangling" $x$.
$endgroup$
– Hendrik Vogt
Sep 22 '12 at 8:00
3
$begingroup$
The advantage of writing $mathrm dx$ at the beginning is that for nested integrals with limits, it's more easily seen which limits belong to which variable, compare $int_1^2mathrm dxint_3^4mathrm dy,f(x^2+g(x,y))h(x+y-3)$ with $int_1^2int_3^4 f(x^2+g(x,y))h(x+y-3),mathrm dy,mathrm dx$
$endgroup$
– celtschk
Sep 22 '12 at 9:48
3
$begingroup$
Playing loose with the use of $dx$ as bracket is not exclusive to physics: who hasn't written something like $int frac{dx}{x}$ before?
$endgroup$
– Erick Wong
Sep 25 '12 at 18:35
1
1
$begingroup$
It is quite common, too, to write simply $int f(x)$, by the way: this is possible only when this does not introduce any ambiguities (and unless the integrand is an actual formula, it is much better to write $int f$...)
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:52
$begingroup$
It is quite common, too, to write simply $int f(x)$, by the way: this is possible only when this does not introduce any ambiguities (and unless the integrand is an actual formula, it is much better to write $int f$...)
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:52
$begingroup$
An advantage of the notation $int f(x)mathrm dx$ is that it can be read out quite directly as «the integral of $f$ with respect to $x$», without having to add much.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:53
$begingroup$
An advantage of the notation $int f(x)mathrm dx$ is that it can be read out quite directly as «the integral of $f$ with respect to $x$», without having to add much.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:53
$begingroup$
Instead of the short version $int f(x)$ I prefer the even shorter version $int f$, where I don't have any "dangling" $x$.
$endgroup$
– Hendrik Vogt
Sep 22 '12 at 8:00
$begingroup$
Instead of the short version $int f(x)$ I prefer the even shorter version $int f$, where I don't have any "dangling" $x$.
$endgroup$
– Hendrik Vogt
Sep 22 '12 at 8:00
3
3
$begingroup$
The advantage of writing $mathrm dx$ at the beginning is that for nested integrals with limits, it's more easily seen which limits belong to which variable, compare $int_1^2mathrm dxint_3^4mathrm dy,f(x^2+g(x,y))h(x+y-3)$ with $int_1^2int_3^4 f(x^2+g(x,y))h(x+y-3),mathrm dy,mathrm dx$
$endgroup$
– celtschk
Sep 22 '12 at 9:48
$begingroup$
The advantage of writing $mathrm dx$ at the beginning is that for nested integrals with limits, it's more easily seen which limits belong to which variable, compare $int_1^2mathrm dxint_3^4mathrm dy,f(x^2+g(x,y))h(x+y-3)$ with $int_1^2int_3^4 f(x^2+g(x,y))h(x+y-3),mathrm dy,mathrm dx$
$endgroup$
– celtschk
Sep 22 '12 at 9:48
3
3
$begingroup$
Playing loose with the use of $dx$ as bracket is not exclusive to physics: who hasn't written something like $int frac{dx}{x}$ before?
$endgroup$
– Erick Wong
Sep 25 '12 at 18:35
$begingroup$
Playing loose with the use of $dx$ as bracket is not exclusive to physics: who hasn't written something like $int frac{dx}{x}$ before?
$endgroup$
– Erick Wong
Sep 25 '12 at 18:35
|
show 1 more comment
$begingroup$
Historically, calculus was framed in terms of infinitesimally small numbers. The Leibniz notation dy/dx was originally intended to mean, literally, the division of two infinitesimals. The Leibniz notation $int f dx$ was meant to indicate a sum of infinitely many rectangles, each with infinitesimal width dx. (The integral sign $int$ is an "S" for "sum.") Note that the factor $dx$ in the integral is needed in order to make the units come out right. For example, if you're calculating mechanical work as $W=int F dx$, the units wouldn't be newton-meters if you didn't have the factor of $dx$, which has units of meters.
In the 19th century, mathematicians got uneasy about infinitesimals. They were afraid that a system of mathematics based on infinitesimals could not be developed in a fully rigorous and consistent way. Therefore, they rebuilt the foundations of calculus using limits, but they kept the Leibniz notation, which is extremely useful and practical. In this approach, $W=int F dx$ stands for a limit of Riemann sums of rectangles with finite widths $Delta x$, and the $dx$ becomes an archaism.
Around 1960, Abraham Robinson showed that it was possible to have calculus built on a foundation of infinitesimals, and that no inconsistency would result (unless there was an inconsistency that would also affect the real number system itself, which nobody thinks is the case). Therefore it's legitimate to think of integrals and derivatives in essentially the same way that Newton and Leibniz originally conceived of them -- in fact, scientists and engineers never actually stopped thinking about them that way.
$endgroup$
2
$begingroup$
It is legitimate to think that provided one knows how to do it properly —which most people do not!
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:54
3
$begingroup$
@MarianoSuárez-Alvarez: All professional scientists and engineers know how to do it properly. They just don't know how to justify their practices in terms of NSA, or how to systematize their practices in detail. They have a set of techniques for manipulating infinitesimals. These techniques worked for Leibniz and Euler, and have worked for everyone since then, and that practitioners never stopped using.
$endgroup$
– Ben Crowell
Sep 21 '12 at 20:20
2
$begingroup$
Well, I have certainly seen people make mistakes —specially people who are just stating with calculus (which is the context of the OP, as one should not forget) In any case, that Robinson managed to formalize is completely orthogonal to the fact that all those people you mention do manage to work successfully...: they could probably not care less for that formalization and would probably not be able to understand it anyways.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 21:34
3
$begingroup$
@MarianoSuárez-Alvarez: "they could probably not care less for that formalization and would probably not be able to understand it anyways." There is nothing that difficult or esoteric about NSA. Keisler did a very nice freshman calc book using it: math.wisc.edu/~keisler/calc.html
$endgroup$
– Ben Crowell
Sep 22 '12 at 0:08
2
$begingroup$
I know it can be done. The majority of those "professional scientists and engineers" you mentioned, though, have not been exposed to NSA, nor probably want to be!
$endgroup$
– Mariano Suárez-Álvarez
Sep 22 '12 at 0:14
add a comment |
$begingroup$
Historically, calculus was framed in terms of infinitesimally small numbers. The Leibniz notation dy/dx was originally intended to mean, literally, the division of two infinitesimals. The Leibniz notation $int f dx$ was meant to indicate a sum of infinitely many rectangles, each with infinitesimal width dx. (The integral sign $int$ is an "S" for "sum.") Note that the factor $dx$ in the integral is needed in order to make the units come out right. For example, if you're calculating mechanical work as $W=int F dx$, the units wouldn't be newton-meters if you didn't have the factor of $dx$, which has units of meters.
In the 19th century, mathematicians got uneasy about infinitesimals. They were afraid that a system of mathematics based on infinitesimals could not be developed in a fully rigorous and consistent way. Therefore, they rebuilt the foundations of calculus using limits, but they kept the Leibniz notation, which is extremely useful and practical. In this approach, $W=int F dx$ stands for a limit of Riemann sums of rectangles with finite widths $Delta x$, and the $dx$ becomes an archaism.
Around 1960, Abraham Robinson showed that it was possible to have calculus built on a foundation of infinitesimals, and that no inconsistency would result (unless there was an inconsistency that would also affect the real number system itself, which nobody thinks is the case). Therefore it's legitimate to think of integrals and derivatives in essentially the same way that Newton and Leibniz originally conceived of them -- in fact, scientists and engineers never actually stopped thinking about them that way.
$endgroup$
2
$begingroup$
It is legitimate to think that provided one knows how to do it properly —which most people do not!
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:54
3
$begingroup$
@MarianoSuárez-Alvarez: All professional scientists and engineers know how to do it properly. They just don't know how to justify their practices in terms of NSA, or how to systematize their practices in detail. They have a set of techniques for manipulating infinitesimals. These techniques worked for Leibniz and Euler, and have worked for everyone since then, and that practitioners never stopped using.
$endgroup$
– Ben Crowell
Sep 21 '12 at 20:20
2
$begingroup$
Well, I have certainly seen people make mistakes —specially people who are just stating with calculus (which is the context of the OP, as one should not forget) In any case, that Robinson managed to formalize is completely orthogonal to the fact that all those people you mention do manage to work successfully...: they could probably not care less for that formalization and would probably not be able to understand it anyways.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 21:34
3
$begingroup$
@MarianoSuárez-Alvarez: "they could probably not care less for that formalization and would probably not be able to understand it anyways." There is nothing that difficult or esoteric about NSA. Keisler did a very nice freshman calc book using it: math.wisc.edu/~keisler/calc.html
$endgroup$
– Ben Crowell
Sep 22 '12 at 0:08
2
$begingroup$
I know it can be done. The majority of those "professional scientists and engineers" you mentioned, though, have not been exposed to NSA, nor probably want to be!
$endgroup$
– Mariano Suárez-Álvarez
Sep 22 '12 at 0:14
add a comment |
$begingroup$
Historically, calculus was framed in terms of infinitesimally small numbers. The Leibniz notation dy/dx was originally intended to mean, literally, the division of two infinitesimals. The Leibniz notation $int f dx$ was meant to indicate a sum of infinitely many rectangles, each with infinitesimal width dx. (The integral sign $int$ is an "S" for "sum.") Note that the factor $dx$ in the integral is needed in order to make the units come out right. For example, if you're calculating mechanical work as $W=int F dx$, the units wouldn't be newton-meters if you didn't have the factor of $dx$, which has units of meters.
In the 19th century, mathematicians got uneasy about infinitesimals. They were afraid that a system of mathematics based on infinitesimals could not be developed in a fully rigorous and consistent way. Therefore, they rebuilt the foundations of calculus using limits, but they kept the Leibniz notation, which is extremely useful and practical. In this approach, $W=int F dx$ stands for a limit of Riemann sums of rectangles with finite widths $Delta x$, and the $dx$ becomes an archaism.
Around 1960, Abraham Robinson showed that it was possible to have calculus built on a foundation of infinitesimals, and that no inconsistency would result (unless there was an inconsistency that would also affect the real number system itself, which nobody thinks is the case). Therefore it's legitimate to think of integrals and derivatives in essentially the same way that Newton and Leibniz originally conceived of them -- in fact, scientists and engineers never actually stopped thinking about them that way.
$endgroup$
Historically, calculus was framed in terms of infinitesimally small numbers. The Leibniz notation dy/dx was originally intended to mean, literally, the division of two infinitesimals. The Leibniz notation $int f dx$ was meant to indicate a sum of infinitely many rectangles, each with infinitesimal width dx. (The integral sign $int$ is an "S" for "sum.") Note that the factor $dx$ in the integral is needed in order to make the units come out right. For example, if you're calculating mechanical work as $W=int F dx$, the units wouldn't be newton-meters if you didn't have the factor of $dx$, which has units of meters.
In the 19th century, mathematicians got uneasy about infinitesimals. They were afraid that a system of mathematics based on infinitesimals could not be developed in a fully rigorous and consistent way. Therefore, they rebuilt the foundations of calculus using limits, but they kept the Leibniz notation, which is extremely useful and practical. In this approach, $W=int F dx$ stands for a limit of Riemann sums of rectangles with finite widths $Delta x$, and the $dx$ becomes an archaism.
Around 1960, Abraham Robinson showed that it was possible to have calculus built on a foundation of infinitesimals, and that no inconsistency would result (unless there was an inconsistency that would also affect the real number system itself, which nobody thinks is the case). Therefore it's legitimate to think of integrals and derivatives in essentially the same way that Newton and Leibniz originally conceived of them -- in fact, scientists and engineers never actually stopped thinking about them that way.
answered Sep 21 '12 at 17:52
Ben CrowellBen Crowell
4,8852651
4,8852651
2
$begingroup$
It is legitimate to think that provided one knows how to do it properly —which most people do not!
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:54
3
$begingroup$
@MarianoSuárez-Alvarez: All professional scientists and engineers know how to do it properly. They just don't know how to justify their practices in terms of NSA, or how to systematize their practices in detail. They have a set of techniques for manipulating infinitesimals. These techniques worked for Leibniz and Euler, and have worked for everyone since then, and that practitioners never stopped using.
$endgroup$
– Ben Crowell
Sep 21 '12 at 20:20
2
$begingroup$
Well, I have certainly seen people make mistakes —specially people who are just stating with calculus (which is the context of the OP, as one should not forget) In any case, that Robinson managed to formalize is completely orthogonal to the fact that all those people you mention do manage to work successfully...: they could probably not care less for that formalization and would probably not be able to understand it anyways.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 21:34
3
$begingroup$
@MarianoSuárez-Alvarez: "they could probably not care less for that formalization and would probably not be able to understand it anyways." There is nothing that difficult or esoteric about NSA. Keisler did a very nice freshman calc book using it: math.wisc.edu/~keisler/calc.html
$endgroup$
– Ben Crowell
Sep 22 '12 at 0:08
2
$begingroup$
I know it can be done. The majority of those "professional scientists and engineers" you mentioned, though, have not been exposed to NSA, nor probably want to be!
$endgroup$
– Mariano Suárez-Álvarez
Sep 22 '12 at 0:14
add a comment |
2
$begingroup$
It is legitimate to think that provided one knows how to do it properly —which most people do not!
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:54
3
$begingroup$
@MarianoSuárez-Alvarez: All professional scientists and engineers know how to do it properly. They just don't know how to justify their practices in terms of NSA, or how to systematize their practices in detail. They have a set of techniques for manipulating infinitesimals. These techniques worked for Leibniz and Euler, and have worked for everyone since then, and that practitioners never stopped using.
$endgroup$
– Ben Crowell
Sep 21 '12 at 20:20
2
$begingroup$
Well, I have certainly seen people make mistakes —specially people who are just stating with calculus (which is the context of the OP, as one should not forget) In any case, that Robinson managed to formalize is completely orthogonal to the fact that all those people you mention do manage to work successfully...: they could probably not care less for that formalization and would probably not be able to understand it anyways.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 21:34
3
$begingroup$
@MarianoSuárez-Alvarez: "they could probably not care less for that formalization and would probably not be able to understand it anyways." There is nothing that difficult or esoteric about NSA. Keisler did a very nice freshman calc book using it: math.wisc.edu/~keisler/calc.html
$endgroup$
– Ben Crowell
Sep 22 '12 at 0:08
2
$begingroup$
I know it can be done. The majority of those "professional scientists and engineers" you mentioned, though, have not been exposed to NSA, nor probably want to be!
$endgroup$
– Mariano Suárez-Álvarez
Sep 22 '12 at 0:14
2
2
$begingroup$
It is legitimate to think that provided one knows how to do it properly —which most people do not!
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:54
$begingroup$
It is legitimate to think that provided one knows how to do it properly —which most people do not!
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 17:54
3
3
$begingroup$
@MarianoSuárez-Alvarez: All professional scientists and engineers know how to do it properly. They just don't know how to justify their practices in terms of NSA, or how to systematize their practices in detail. They have a set of techniques for manipulating infinitesimals. These techniques worked for Leibniz and Euler, and have worked for everyone since then, and that practitioners never stopped using.
$endgroup$
– Ben Crowell
Sep 21 '12 at 20:20
$begingroup$
@MarianoSuárez-Alvarez: All professional scientists and engineers know how to do it properly. They just don't know how to justify their practices in terms of NSA, or how to systematize their practices in detail. They have a set of techniques for manipulating infinitesimals. These techniques worked for Leibniz and Euler, and have worked for everyone since then, and that practitioners never stopped using.
$endgroup$
– Ben Crowell
Sep 21 '12 at 20:20
2
2
$begingroup$
Well, I have certainly seen people make mistakes —specially people who are just stating with calculus (which is the context of the OP, as one should not forget) In any case, that Robinson managed to formalize is completely orthogonal to the fact that all those people you mention do manage to work successfully...: they could probably not care less for that formalization and would probably not be able to understand it anyways.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 21:34
$begingroup$
Well, I have certainly seen people make mistakes —specially people who are just stating with calculus (which is the context of the OP, as one should not forget) In any case, that Robinson managed to formalize is completely orthogonal to the fact that all those people you mention do manage to work successfully...: they could probably not care less for that formalization and would probably not be able to understand it anyways.
$endgroup$
– Mariano Suárez-Álvarez
Sep 21 '12 at 21:34
3
3
$begingroup$
@MarianoSuárez-Alvarez: "they could probably not care less for that formalization and would probably not be able to understand it anyways." There is nothing that difficult or esoteric about NSA. Keisler did a very nice freshman calc book using it: math.wisc.edu/~keisler/calc.html
$endgroup$
– Ben Crowell
Sep 22 '12 at 0:08
$begingroup$
@MarianoSuárez-Alvarez: "they could probably not care less for that formalization and would probably not be able to understand it anyways." There is nothing that difficult or esoteric about NSA. Keisler did a very nice freshman calc book using it: math.wisc.edu/~keisler/calc.html
$endgroup$
– Ben Crowell
Sep 22 '12 at 0:08
2
2
$begingroup$
I know it can be done. The majority of those "professional scientists and engineers" you mentioned, though, have not been exposed to NSA, nor probably want to be!
$endgroup$
– Mariano Suárez-Álvarez
Sep 22 '12 at 0:14
$begingroup$
I know it can be done. The majority of those "professional scientists and engineers" you mentioned, though, have not been exposed to NSA, nor probably want to be!
$endgroup$
– Mariano Suárez-Álvarez
Sep 22 '12 at 0:14
add a comment |
$begingroup$
I once went at some length illustrating the point that for the purpose of evaluating integrals it is useful to look at $d$ as a linear operator.
$endgroup$
5
$begingroup$
thanks for -1, any hints on improvement?
$endgroup$
– Valentin
Oct 4 '12 at 18:02
1
$begingroup$
Answer is pretty terse, if you don't go on at length here it's not obviously useful, just sounds like you felt like sprinkling in an anecdote.
$endgroup$
– Joseph Garvin
Oct 3 '17 at 2:33
add a comment |
$begingroup$
I once went at some length illustrating the point that for the purpose of evaluating integrals it is useful to look at $d$ as a linear operator.
$endgroup$
5
$begingroup$
thanks for -1, any hints on improvement?
$endgroup$
– Valentin
Oct 4 '12 at 18:02
1
$begingroup$
Answer is pretty terse, if you don't go on at length here it's not obviously useful, just sounds like you felt like sprinkling in an anecdote.
$endgroup$
– Joseph Garvin
Oct 3 '17 at 2:33
add a comment |
$begingroup$
I once went at some length illustrating the point that for the purpose of evaluating integrals it is useful to look at $d$ as a linear operator.
$endgroup$
I once went at some length illustrating the point that for the purpose of evaluating integrals it is useful to look at $d$ as a linear operator.
answered Sep 21 '12 at 19:05
ValentinValentin
3,7151115
3,7151115
5
$begingroup$
thanks for -1, any hints on improvement?
$endgroup$
– Valentin
Oct 4 '12 at 18:02
1
$begingroup$
Answer is pretty terse, if you don't go on at length here it's not obviously useful, just sounds like you felt like sprinkling in an anecdote.
$endgroup$
– Joseph Garvin
Oct 3 '17 at 2:33
add a comment |
5
$begingroup$
thanks for -1, any hints on improvement?
$endgroup$
– Valentin
Oct 4 '12 at 18:02
1
$begingroup$
Answer is pretty terse, if you don't go on at length here it's not obviously useful, just sounds like you felt like sprinkling in an anecdote.
$endgroup$
– Joseph Garvin
Oct 3 '17 at 2:33
5
5
$begingroup$
thanks for -1, any hints on improvement?
$endgroup$
– Valentin
Oct 4 '12 at 18:02
$begingroup$
thanks for -1, any hints on improvement?
$endgroup$
– Valentin
Oct 4 '12 at 18:02
1
1
$begingroup$
Answer is pretty terse, if you don't go on at length here it's not obviously useful, just sounds like you felt like sprinkling in an anecdote.
$endgroup$
– Joseph Garvin
Oct 3 '17 at 2:33
$begingroup$
Answer is pretty terse, if you don't go on at length here it's not obviously useful, just sounds like you felt like sprinkling in an anecdote.
$endgroup$
– Joseph Garvin
Oct 3 '17 at 2:33
add a comment |
$begingroup$
Of course for something as simple as $int{f(x)}dx$, you dont have to write $dx$ if you don't feel like it, and in many situations you are allowed to just write $int{f}$, although I don't personally make a habit of it.
These things you ask about are not merely some convenient book-keeping device to let us know where the end of the intergral is, they are called differential forms, and you can add and multiply them together.
The algebra of differential forms follow naturally from the simple rule that $dx^2=0$ because this rule actually implies another very important rule, namely that $dxwedge dy=-dywedge dx$, or in other words, that differential forms commute anti-symmetrically, see here for more info.
$endgroup$
add a comment |
$begingroup$
Of course for something as simple as $int{f(x)}dx$, you dont have to write $dx$ if you don't feel like it, and in many situations you are allowed to just write $int{f}$, although I don't personally make a habit of it.
These things you ask about are not merely some convenient book-keeping device to let us know where the end of the intergral is, they are called differential forms, and you can add and multiply them together.
The algebra of differential forms follow naturally from the simple rule that $dx^2=0$ because this rule actually implies another very important rule, namely that $dxwedge dy=-dywedge dx$, or in other words, that differential forms commute anti-symmetrically, see here for more info.
$endgroup$
add a comment |
$begingroup$
Of course for something as simple as $int{f(x)}dx$, you dont have to write $dx$ if you don't feel like it, and in many situations you are allowed to just write $int{f}$, although I don't personally make a habit of it.
These things you ask about are not merely some convenient book-keeping device to let us know where the end of the intergral is, they are called differential forms, and you can add and multiply them together.
The algebra of differential forms follow naturally from the simple rule that $dx^2=0$ because this rule actually implies another very important rule, namely that $dxwedge dy=-dywedge dx$, or in other words, that differential forms commute anti-symmetrically, see here for more info.
$endgroup$
Of course for something as simple as $int{f(x)}dx$, you dont have to write $dx$ if you don't feel like it, and in many situations you are allowed to just write $int{f}$, although I don't personally make a habit of it.
These things you ask about are not merely some convenient book-keeping device to let us know where the end of the intergral is, they are called differential forms, and you can add and multiply them together.
The algebra of differential forms follow naturally from the simple rule that $dx^2=0$ because this rule actually implies another very important rule, namely that $dxwedge dy=-dywedge dx$, or in other words, that differential forms commute anti-symmetrically, see here for more info.
edited Apr 13 '17 at 12:20
Community♦
1
1
answered Sep 22 '12 at 2:58
Matt CalhounMatt Calhoun
2,9022249
2,9022249
add a comment |
add a comment |
$begingroup$
I did the exact same question to myself and I give you the answer at which I arrived or how I see this.
Ok, let's see. The meaning of $dx$ on $textit{definite}$ integrals is quite clear (as has been pointed out in other answers), it's the limit when the length element goes to $0$, so when writing $int_0^1{}x^2dx$ the $dx$ has a clear meaning.
We know that $textit{indefinite}$ integrals, or the anti-derivatives, can be used via calculus' fundamental theorem to calculate definite integrals, so one could think at this point that we write $dx$ while doing anti-derivatives because of the "closeness" of definite and indefinite integrals and that the $dx$ in $int{}x^2dx$ does really have no other meaning than full stop.
But that's not the whole story. Truth is that the $dx$ is a "handy" way for changing variables (which is really useful doing integrals).
Imagine you wanna get the anti-derivative of $w(x)$. Since you wanna get the anti-derivative, this function is (you hope) a derivative of some (actually infinite but that is not important now) function, so you wanna integrate
$w(x)=f'(x)$
$f(x)$ IS what you wanna get.
Imagine also that you are incompetent enough not to know how to do this. So, in order to solve this you decide you wanna try changing variables, hoping that this will clear the mess and you will be more competent integrating respect to the new variable.
You proceed along this line defining the new variable
$xequiv{}g(m)$ and $f(x)equiv{}h(m)$
This is important, if we would be able to get $h(m)$ reversing the variable change we'd get $f(x)$ and the problem would be solved.
So you try out the new variable in hopes of getting $h'(m)$ from $f'(x)$ in hopes of being able to carry out the integration on $h'(m)$
$f'(x)=f'(x=g(m))=h'(m)m'(x)$
and remembering $m'(x)=frac{dm}{dx}$ and rearranging terms
$f'(x)dx=h'(m)dm$
And know it is clear why the $dx$ is useful. Multiplying it with $f(x)$ makes the variables "ordered" after variable change and you easily get $h'(m)$ from $f'(x)$ which is what you wanted.
So you see, when doing variable change the $dx$ is something that helps you find the integrand respect to the new variable, and hence, it is written from the beginnig because it is expected that you will have to carry out variable changes and then you will need it.
So summarizing. It actually means full stop or absolutely nothing, but you will (probably) need it so write it and pretend not to see it until you need it.
$endgroup$
add a comment |
$begingroup$
I did the exact same question to myself and I give you the answer at which I arrived or how I see this.
Ok, let's see. The meaning of $dx$ on $textit{definite}$ integrals is quite clear (as has been pointed out in other answers), it's the limit when the length element goes to $0$, so when writing $int_0^1{}x^2dx$ the $dx$ has a clear meaning.
We know that $textit{indefinite}$ integrals, or the anti-derivatives, can be used via calculus' fundamental theorem to calculate definite integrals, so one could think at this point that we write $dx$ while doing anti-derivatives because of the "closeness" of definite and indefinite integrals and that the $dx$ in $int{}x^2dx$ does really have no other meaning than full stop.
But that's not the whole story. Truth is that the $dx$ is a "handy" way for changing variables (which is really useful doing integrals).
Imagine you wanna get the anti-derivative of $w(x)$. Since you wanna get the anti-derivative, this function is (you hope) a derivative of some (actually infinite but that is not important now) function, so you wanna integrate
$w(x)=f'(x)$
$f(x)$ IS what you wanna get.
Imagine also that you are incompetent enough not to know how to do this. So, in order to solve this you decide you wanna try changing variables, hoping that this will clear the mess and you will be more competent integrating respect to the new variable.
You proceed along this line defining the new variable
$xequiv{}g(m)$ and $f(x)equiv{}h(m)$
This is important, if we would be able to get $h(m)$ reversing the variable change we'd get $f(x)$ and the problem would be solved.
So you try out the new variable in hopes of getting $h'(m)$ from $f'(x)$ in hopes of being able to carry out the integration on $h'(m)$
$f'(x)=f'(x=g(m))=h'(m)m'(x)$
and remembering $m'(x)=frac{dm}{dx}$ and rearranging terms
$f'(x)dx=h'(m)dm$
And know it is clear why the $dx$ is useful. Multiplying it with $f(x)$ makes the variables "ordered" after variable change and you easily get $h'(m)$ from $f'(x)$ which is what you wanted.
So you see, when doing variable change the $dx$ is something that helps you find the integrand respect to the new variable, and hence, it is written from the beginnig because it is expected that you will have to carry out variable changes and then you will need it.
So summarizing. It actually means full stop or absolutely nothing, but you will (probably) need it so write it and pretend not to see it until you need it.
$endgroup$
add a comment |
$begingroup$
I did the exact same question to myself and I give you the answer at which I arrived or how I see this.
Ok, let's see. The meaning of $dx$ on $textit{definite}$ integrals is quite clear (as has been pointed out in other answers), it's the limit when the length element goes to $0$, so when writing $int_0^1{}x^2dx$ the $dx$ has a clear meaning.
We know that $textit{indefinite}$ integrals, or the anti-derivatives, can be used via calculus' fundamental theorem to calculate definite integrals, so one could think at this point that we write $dx$ while doing anti-derivatives because of the "closeness" of definite and indefinite integrals and that the $dx$ in $int{}x^2dx$ does really have no other meaning than full stop.
But that's not the whole story. Truth is that the $dx$ is a "handy" way for changing variables (which is really useful doing integrals).
Imagine you wanna get the anti-derivative of $w(x)$. Since you wanna get the anti-derivative, this function is (you hope) a derivative of some (actually infinite but that is not important now) function, so you wanna integrate
$w(x)=f'(x)$
$f(x)$ IS what you wanna get.
Imagine also that you are incompetent enough not to know how to do this. So, in order to solve this you decide you wanna try changing variables, hoping that this will clear the mess and you will be more competent integrating respect to the new variable.
You proceed along this line defining the new variable
$xequiv{}g(m)$ and $f(x)equiv{}h(m)$
This is important, if we would be able to get $h(m)$ reversing the variable change we'd get $f(x)$ and the problem would be solved.
So you try out the new variable in hopes of getting $h'(m)$ from $f'(x)$ in hopes of being able to carry out the integration on $h'(m)$
$f'(x)=f'(x=g(m))=h'(m)m'(x)$
and remembering $m'(x)=frac{dm}{dx}$ and rearranging terms
$f'(x)dx=h'(m)dm$
And know it is clear why the $dx$ is useful. Multiplying it with $f(x)$ makes the variables "ordered" after variable change and you easily get $h'(m)$ from $f'(x)$ which is what you wanted.
So you see, when doing variable change the $dx$ is something that helps you find the integrand respect to the new variable, and hence, it is written from the beginnig because it is expected that you will have to carry out variable changes and then you will need it.
So summarizing. It actually means full stop or absolutely nothing, but you will (probably) need it so write it and pretend not to see it until you need it.
$endgroup$
I did the exact same question to myself and I give you the answer at which I arrived or how I see this.
Ok, let's see. The meaning of $dx$ on $textit{definite}$ integrals is quite clear (as has been pointed out in other answers), it's the limit when the length element goes to $0$, so when writing $int_0^1{}x^2dx$ the $dx$ has a clear meaning.
We know that $textit{indefinite}$ integrals, or the anti-derivatives, can be used via calculus' fundamental theorem to calculate definite integrals, so one could think at this point that we write $dx$ while doing anti-derivatives because of the "closeness" of definite and indefinite integrals and that the $dx$ in $int{}x^2dx$ does really have no other meaning than full stop.
But that's not the whole story. Truth is that the $dx$ is a "handy" way for changing variables (which is really useful doing integrals).
Imagine you wanna get the anti-derivative of $w(x)$. Since you wanna get the anti-derivative, this function is (you hope) a derivative of some (actually infinite but that is not important now) function, so you wanna integrate
$w(x)=f'(x)$
$f(x)$ IS what you wanna get.
Imagine also that you are incompetent enough not to know how to do this. So, in order to solve this you decide you wanna try changing variables, hoping that this will clear the mess and you will be more competent integrating respect to the new variable.
You proceed along this line defining the new variable
$xequiv{}g(m)$ and $f(x)equiv{}h(m)$
This is important, if we would be able to get $h(m)$ reversing the variable change we'd get $f(x)$ and the problem would be solved.
So you try out the new variable in hopes of getting $h'(m)$ from $f'(x)$ in hopes of being able to carry out the integration on $h'(m)$
$f'(x)=f'(x=g(m))=h'(m)m'(x)$
and remembering $m'(x)=frac{dm}{dx}$ and rearranging terms
$f'(x)dx=h'(m)dm$
And know it is clear why the $dx$ is useful. Multiplying it with $f(x)$ makes the variables "ordered" after variable change and you easily get $h'(m)$ from $f'(x)$ which is what you wanted.
So you see, when doing variable change the $dx$ is something that helps you find the integrand respect to the new variable, and hence, it is written from the beginnig because it is expected that you will have to carry out variable changes and then you will need it.
So summarizing. It actually means full stop or absolutely nothing, but you will (probably) need it so write it and pretend not to see it until you need it.
edited May 24 '14 at 20:23
answered Mar 7 '14 at 0:36
PhoenixPersonPhoenixPerson
142214
142214
add a comment |
add a comment |
$begingroup$
An integral gives you the area between the horizontal axis
and the curve. Most of the time this is the x axis.
y
| |
--|-- ----|---- f(x)
/ | / |
/ | -------- |
| / | |
-----|------- | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is:
Area = $int^b_a f(x) dx$
But say you didn't want to use an integral to measure the
area between the x axis and the curve. Instead you just
caclulate the average value of the graph between a and b
and draw a striaght flat line y = avg(x) (the average
value of x in that range).
Now you have a graph like this:
y
| |
- | - - - | - - f(x)
| / | / |
-----|-----------------------------------|---- avg(x)
| / | |
- - -|- - - - | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is a rectangle:
Area = avg(x) w where w is the width iof the section
The height is avg(x) and the width is w = b-a or in English,
"the width of a slice of the x axis going from a to b."
But say you need a more accurate area. You could break the
graph up into smaller sections and make rectangles out of them.
Say you make 4 equal sections:
y
| |
|----|---| |-------|---- f(x)
| | | | |
| | |--------| |
| | | | | |
-----|---------| | | | |
| | | | | |
| | | | | |
----------|---------|----+---|--------|-------|----- x
a b
And the area is:
Area = section 1 + section 2 + section 3 + section 4
= avg(x,1) w + avg(x,2) w + avg(x,3) w + avg(x,4) w
where w is the width of each section. The sections are all
the same size, so in this case w=(b-a)/4 or in English,
"the width of a thin slice of the x axis or 1/4 of the
width from a to b."
And if we write this with a sumation we get:
Area = $sum^4_{n=1}avg(x,n) w$
But it's still not accurate enough. Let's use
an infinite number of sections. Now our area
becomes a summation of an infinite number of sections.
Since it's an infinite sum, we will use the
integral sign instead of the summation sign:
Area = $int avg(x) w$
where avg(x) for an infinitely thin section will be
equal to f(x) in that section, and w will be "the width of
an infinitely thin section of the x axis."
So instead of avg(x) we can write f(x), because they are
the same if the average is taken over an infinitely small width.
And we can rename the w variable to anything we want.
The width of a section is the difference between the
right side and the left side. The difference between
two points is often called the delta of those values.
So the difference of two x values (like a and b) would
be called delta-x. But that is too long to use in an
equation, so when we have an infinitely small delta,
it is shortened to dx.
If we replace avg(x) and w with these equivalent things:
Area = $int f(x) dx$
So what the equation says is:
Area equals the sum of an infinite number of rectangles
that are f(x) high and dx wide (where dx is an infinitely
small distance).
So you need the dx because otherwise you aren't summing
up rectangles and your answer wouldn't be total area.
dx literally means "an infinitely small width of x".
It even means this in derivatives. A derivative of
a function is the slope of the graph at that point.
Slope is usually measured as the y difference of two
points divided by the x difference of those points:
Slope = (y2 - y1) / (x2 - x1)
But the closer these points get the smaller these
differences get. Let's start calling them deltas,
because the difference between two points is often
called the delta of those values.
Slope = delta-y / delta-x
The deltas get smaller and smaller as these two x,y
points get closer and closer. When they are an
infinitely small distance apart, then the delta-y
and delta-x is shortened to dy and dx:
Slope = dy / dx
The slope is still Slope = (y2 - y1) / (x2 - x1)
but these points are infinitely close together, so
we use dy and dx to tell ourselves that they are
infinitely close or "differential distances."
$endgroup$
2
$begingroup$
Ayush, I appreciate your effort, but! you have used quite informal approach. What you are explaining is definite integral(One should explain both definite and indefinite integral). Honestly speaking you are explaining quite non-rigorously. You have just skipped the explanation of the Limit. "Area equals the sum of an infinite number of rectangles" - A more appropriate(and technically correct) way to say this is: "Total Area equals to the limit of the sum of the areas of $n$ individual rectangles of width $Delta x$ s.t. $Delta xto 0$ and $n to infty$"
$endgroup$
– user103816
May 26 '14 at 7:34
add a comment |
$begingroup$
An integral gives you the area between the horizontal axis
and the curve. Most of the time this is the x axis.
y
| |
--|-- ----|---- f(x)
/ | / |
/ | -------- |
| / | |
-----|------- | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is:
Area = $int^b_a f(x) dx$
But say you didn't want to use an integral to measure the
area between the x axis and the curve. Instead you just
caclulate the average value of the graph between a and b
and draw a striaght flat line y = avg(x) (the average
value of x in that range).
Now you have a graph like this:
y
| |
- | - - - | - - f(x)
| / | / |
-----|-----------------------------------|---- avg(x)
| / | |
- - -|- - - - | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is a rectangle:
Area = avg(x) w where w is the width iof the section
The height is avg(x) and the width is w = b-a or in English,
"the width of a slice of the x axis going from a to b."
But say you need a more accurate area. You could break the
graph up into smaller sections and make rectangles out of them.
Say you make 4 equal sections:
y
| |
|----|---| |-------|---- f(x)
| | | | |
| | |--------| |
| | | | | |
-----|---------| | | | |
| | | | | |
| | | | | |
----------|---------|----+---|--------|-------|----- x
a b
And the area is:
Area = section 1 + section 2 + section 3 + section 4
= avg(x,1) w + avg(x,2) w + avg(x,3) w + avg(x,4) w
where w is the width of each section. The sections are all
the same size, so in this case w=(b-a)/4 or in English,
"the width of a thin slice of the x axis or 1/4 of the
width from a to b."
And if we write this with a sumation we get:
Area = $sum^4_{n=1}avg(x,n) w$
But it's still not accurate enough. Let's use
an infinite number of sections. Now our area
becomes a summation of an infinite number of sections.
Since it's an infinite sum, we will use the
integral sign instead of the summation sign:
Area = $int avg(x) w$
where avg(x) for an infinitely thin section will be
equal to f(x) in that section, and w will be "the width of
an infinitely thin section of the x axis."
So instead of avg(x) we can write f(x), because they are
the same if the average is taken over an infinitely small width.
And we can rename the w variable to anything we want.
The width of a section is the difference between the
right side and the left side. The difference between
two points is often called the delta of those values.
So the difference of two x values (like a and b) would
be called delta-x. But that is too long to use in an
equation, so when we have an infinitely small delta,
it is shortened to dx.
If we replace avg(x) and w with these equivalent things:
Area = $int f(x) dx$
So what the equation says is:
Area equals the sum of an infinite number of rectangles
that are f(x) high and dx wide (where dx is an infinitely
small distance).
So you need the dx because otherwise you aren't summing
up rectangles and your answer wouldn't be total area.
dx literally means "an infinitely small width of x".
It even means this in derivatives. A derivative of
a function is the slope of the graph at that point.
Slope is usually measured as the y difference of two
points divided by the x difference of those points:
Slope = (y2 - y1) / (x2 - x1)
But the closer these points get the smaller these
differences get. Let's start calling them deltas,
because the difference between two points is often
called the delta of those values.
Slope = delta-y / delta-x
The deltas get smaller and smaller as these two x,y
points get closer and closer. When they are an
infinitely small distance apart, then the delta-y
and delta-x is shortened to dy and dx:
Slope = dy / dx
The slope is still Slope = (y2 - y1) / (x2 - x1)
but these points are infinitely close together, so
we use dy and dx to tell ourselves that they are
infinitely close or "differential distances."
$endgroup$
2
$begingroup$
Ayush, I appreciate your effort, but! you have used quite informal approach. What you are explaining is definite integral(One should explain both definite and indefinite integral). Honestly speaking you are explaining quite non-rigorously. You have just skipped the explanation of the Limit. "Area equals the sum of an infinite number of rectangles" - A more appropriate(and technically correct) way to say this is: "Total Area equals to the limit of the sum of the areas of $n$ individual rectangles of width $Delta x$ s.t. $Delta xto 0$ and $n to infty$"
$endgroup$
– user103816
May 26 '14 at 7:34
add a comment |
$begingroup$
An integral gives you the area between the horizontal axis
and the curve. Most of the time this is the x axis.
y
| |
--|-- ----|---- f(x)
/ | / |
/ | -------- |
| / | |
-----|------- | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is:
Area = $int^b_a f(x) dx$
But say you didn't want to use an integral to measure the
area between the x axis and the curve. Instead you just
caclulate the average value of the graph between a and b
and draw a striaght flat line y = avg(x) (the average
value of x in that range).
Now you have a graph like this:
y
| |
- | - - - | - - f(x)
| / | / |
-----|-----------------------------------|---- avg(x)
| / | |
- - -|- - - - | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is a rectangle:
Area = avg(x) w where w is the width iof the section
The height is avg(x) and the width is w = b-a or in English,
"the width of a slice of the x axis going from a to b."
But say you need a more accurate area. You could break the
graph up into smaller sections and make rectangles out of them.
Say you make 4 equal sections:
y
| |
|----|---| |-------|---- f(x)
| | | | |
| | |--------| |
| | | | | |
-----|---------| | | | |
| | | | | |
| | | | | |
----------|---------|----+---|--------|-------|----- x
a b
And the area is:
Area = section 1 + section 2 + section 3 + section 4
= avg(x,1) w + avg(x,2) w + avg(x,3) w + avg(x,4) w
where w is the width of each section. The sections are all
the same size, so in this case w=(b-a)/4 or in English,
"the width of a thin slice of the x axis or 1/4 of the
width from a to b."
And if we write this with a sumation we get:
Area = $sum^4_{n=1}avg(x,n) w$
But it's still not accurate enough. Let's use
an infinite number of sections. Now our area
becomes a summation of an infinite number of sections.
Since it's an infinite sum, we will use the
integral sign instead of the summation sign:
Area = $int avg(x) w$
where avg(x) for an infinitely thin section will be
equal to f(x) in that section, and w will be "the width of
an infinitely thin section of the x axis."
So instead of avg(x) we can write f(x), because they are
the same if the average is taken over an infinitely small width.
And we can rename the w variable to anything we want.
The width of a section is the difference between the
right side and the left side. The difference between
two points is often called the delta of those values.
So the difference of two x values (like a and b) would
be called delta-x. But that is too long to use in an
equation, so when we have an infinitely small delta,
it is shortened to dx.
If we replace avg(x) and w with these equivalent things:
Area = $int f(x) dx$
So what the equation says is:
Area equals the sum of an infinite number of rectangles
that are f(x) high and dx wide (where dx is an infinitely
small distance).
So you need the dx because otherwise you aren't summing
up rectangles and your answer wouldn't be total area.
dx literally means "an infinitely small width of x".
It even means this in derivatives. A derivative of
a function is the slope of the graph at that point.
Slope is usually measured as the y difference of two
points divided by the x difference of those points:
Slope = (y2 - y1) / (x2 - x1)
But the closer these points get the smaller these
differences get. Let's start calling them deltas,
because the difference between two points is often
called the delta of those values.
Slope = delta-y / delta-x
The deltas get smaller and smaller as these two x,y
points get closer and closer. When they are an
infinitely small distance apart, then the delta-y
and delta-x is shortened to dy and dx:
Slope = dy / dx
The slope is still Slope = (y2 - y1) / (x2 - x1)
but these points are infinitely close together, so
we use dy and dx to tell ourselves that they are
infinitely close or "differential distances."
$endgroup$
An integral gives you the area between the horizontal axis
and the curve. Most of the time this is the x axis.
y
| |
--|-- ----|---- f(x)
/ | / |
/ | -------- |
| / | |
-----|------- | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is:
Area = $int^b_a f(x) dx$
But say you didn't want to use an integral to measure the
area between the x axis and the curve. Instead you just
caclulate the average value of the graph between a and b
and draw a striaght flat line y = avg(x) (the average
value of x in that range).
Now you have a graph like this:
y
| |
- | - - - | - - f(x)
| / | / |
-----|-----------------------------------|---- avg(x)
| / | |
- - -|- - - - | |
| | |
| | |
----------|--------------+--------------------|----- x
a b
And the area enclosed is a rectangle:
Area = avg(x) w where w is the width iof the section
The height is avg(x) and the width is w = b-a or in English,
"the width of a slice of the x axis going from a to b."
But say you need a more accurate area. You could break the
graph up into smaller sections and make rectangles out of them.
Say you make 4 equal sections:
y
| |
|----|---| |-------|---- f(x)
| | | | |
| | |--------| |
| | | | | |
-----|---------| | | | |
| | | | | |
| | | | | |
----------|---------|----+---|--------|-------|----- x
a b
And the area is:
Area = section 1 + section 2 + section 3 + section 4
= avg(x,1) w + avg(x,2) w + avg(x,3) w + avg(x,4) w
where w is the width of each section. The sections are all
the same size, so in this case w=(b-a)/4 or in English,
"the width of a thin slice of the x axis or 1/4 of the
width from a to b."
And if we write this with a sumation we get:
Area = $sum^4_{n=1}avg(x,n) w$
But it's still not accurate enough. Let's use
an infinite number of sections. Now our area
becomes a summation of an infinite number of sections.
Since it's an infinite sum, we will use the
integral sign instead of the summation sign:
Area = $int avg(x) w$
where avg(x) for an infinitely thin section will be
equal to f(x) in that section, and w will be "the width of
an infinitely thin section of the x axis."
So instead of avg(x) we can write f(x), because they are
the same if the average is taken over an infinitely small width.
And we can rename the w variable to anything we want.
The width of a section is the difference between the
right side and the left side. The difference between
two points is often called the delta of those values.
So the difference of two x values (like a and b) would
be called delta-x. But that is too long to use in an
equation, so when we have an infinitely small delta,
it is shortened to dx.
If we replace avg(x) and w with these equivalent things:
Area = $int f(x) dx$
So what the equation says is:
Area equals the sum of an infinite number of rectangles
that are f(x) high and dx wide (where dx is an infinitely
small distance).
So you need the dx because otherwise you aren't summing
up rectangles and your answer wouldn't be total area.
dx literally means "an infinitely small width of x".
It even means this in derivatives. A derivative of
a function is the slope of the graph at that point.
Slope is usually measured as the y difference of two
points divided by the x difference of those points:
Slope = (y2 - y1) / (x2 - x1)
But the closer these points get the smaller these
differences get. Let's start calling them deltas,
because the difference between two points is often
called the delta of those values.
Slope = delta-y / delta-x
The deltas get smaller and smaller as these two x,y
points get closer and closer. When they are an
infinitely small distance apart, then the delta-y
and delta-x is shortened to dy and dx:
Slope = dy / dx
The slope is still Slope = (y2 - y1) / (x2 - x1)
but these points are infinitely close together, so
we use dy and dx to tell ourselves that they are
infinitely close or "differential distances."
answered May 26 '14 at 3:25
Ayush KhemkaAyush Khemka
5301411
5301411
2
$begingroup$
Ayush, I appreciate your effort, but! you have used quite informal approach. What you are explaining is definite integral(One should explain both definite and indefinite integral). Honestly speaking you are explaining quite non-rigorously. You have just skipped the explanation of the Limit. "Area equals the sum of an infinite number of rectangles" - A more appropriate(and technically correct) way to say this is: "Total Area equals to the limit of the sum of the areas of $n$ individual rectangles of width $Delta x$ s.t. $Delta xto 0$ and $n to infty$"
$endgroup$
– user103816
May 26 '14 at 7:34
add a comment |
2
$begingroup$
Ayush, I appreciate your effort, but! you have used quite informal approach. What you are explaining is definite integral(One should explain both definite and indefinite integral). Honestly speaking you are explaining quite non-rigorously. You have just skipped the explanation of the Limit. "Area equals the sum of an infinite number of rectangles" - A more appropriate(and technically correct) way to say this is: "Total Area equals to the limit of the sum of the areas of $n$ individual rectangles of width $Delta x$ s.t. $Delta xto 0$ and $n to infty$"
$endgroup$
– user103816
May 26 '14 at 7:34
2
2
$begingroup$
Ayush, I appreciate your effort, but! you have used quite informal approach. What you are explaining is definite integral(One should explain both definite and indefinite integral). Honestly speaking you are explaining quite non-rigorously. You have just skipped the explanation of the Limit. "Area equals the sum of an infinite number of rectangles" - A more appropriate(and technically correct) way to say this is: "Total Area equals to the limit of the sum of the areas of $n$ individual rectangles of width $Delta x$ s.t. $Delta xto 0$ and $n to infty$"
$endgroup$
– user103816
May 26 '14 at 7:34
$begingroup$
Ayush, I appreciate your effort, but! you have used quite informal approach. What you are explaining is definite integral(One should explain both definite and indefinite integral). Honestly speaking you are explaining quite non-rigorously. You have just skipped the explanation of the Limit. "Area equals the sum of an infinite number of rectangles" - A more appropriate(and technically correct) way to say this is: "Total Area equals to the limit of the sum of the areas of $n$ individual rectangles of width $Delta x$ s.t. $Delta xto 0$ and $n to infty$"
$endgroup$
– user103816
May 26 '14 at 7:34
add a comment |
$begingroup$
The reason why dx is added to after the integrand is as follows:
Say, that dy/dx = f(x).
Then, dy= f(x) * dx.
So, y= int (f(x)*dx)
Therefore the dx has to be part of the expression if y is to be calculated.
$endgroup$
add a comment |
$begingroup$
The reason why dx is added to after the integrand is as follows:
Say, that dy/dx = f(x).
Then, dy= f(x) * dx.
So, y= int (f(x)*dx)
Therefore the dx has to be part of the expression if y is to be calculated.
$endgroup$
add a comment |
$begingroup$
The reason why dx is added to after the integrand is as follows:
Say, that dy/dx = f(x).
Then, dy= f(x) * dx.
So, y= int (f(x)*dx)
Therefore the dx has to be part of the expression if y is to be calculated.
$endgroup$
The reason why dx is added to after the integrand is as follows:
Say, that dy/dx = f(x).
Then, dy= f(x) * dx.
So, y= int (f(x)*dx)
Therefore the dx has to be part of the expression if y is to be calculated.
answered Aug 22 '14 at 17:01
YashYash
311
311
add a comment |
add a comment |
$begingroup$
Before taking calculus, your teacher ought to have taught you about the limits of functions. Otherwise calculus would be impossible to understand in the context of algebra and geometry. I strongly recommend "Teach Yourself Calculus" by P. Abbott. Old editions from 1960s are available on Amazon secondhand. (Please do NOT get the 'new' version by a chap called O'Neill - this is just a revenue hijack, as far as I can see.)
After getting a good handle on limits of functions, you'll soon see how
$$ lim_{Delta x to 0}{frac{Delta y}{Delta x}} = frac{dy}{dx}$$
$endgroup$
add a comment |
$begingroup$
Before taking calculus, your teacher ought to have taught you about the limits of functions. Otherwise calculus would be impossible to understand in the context of algebra and geometry. I strongly recommend "Teach Yourself Calculus" by P. Abbott. Old editions from 1960s are available on Amazon secondhand. (Please do NOT get the 'new' version by a chap called O'Neill - this is just a revenue hijack, as far as I can see.)
After getting a good handle on limits of functions, you'll soon see how
$$ lim_{Delta x to 0}{frac{Delta y}{Delta x}} = frac{dy}{dx}$$
$endgroup$
add a comment |
$begingroup$
Before taking calculus, your teacher ought to have taught you about the limits of functions. Otherwise calculus would be impossible to understand in the context of algebra and geometry. I strongly recommend "Teach Yourself Calculus" by P. Abbott. Old editions from 1960s are available on Amazon secondhand. (Please do NOT get the 'new' version by a chap called O'Neill - this is just a revenue hijack, as far as I can see.)
After getting a good handle on limits of functions, you'll soon see how
$$ lim_{Delta x to 0}{frac{Delta y}{Delta x}} = frac{dy}{dx}$$
$endgroup$
Before taking calculus, your teacher ought to have taught you about the limits of functions. Otherwise calculus would be impossible to understand in the context of algebra and geometry. I strongly recommend "Teach Yourself Calculus" by P. Abbott. Old editions from 1960s are available on Amazon secondhand. (Please do NOT get the 'new' version by a chap called O'Neill - this is just a revenue hijack, as far as I can see.)
After getting a good handle on limits of functions, you'll soon see how
$$ lim_{Delta x to 0}{frac{Delta y}{Delta x}} = frac{dy}{dx}$$
answered Jul 26 '18 at 17:18
TrunkTrunk
1575
1575
add a comment |
add a comment |
protected by Saad Sep 28 '18 at 14:52
Thank you for your interest in this question.
Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).
Would you like to answer one of these unanswered questions instead?
2
$begingroup$
This question is somewhat related and may be useful to you: math.stackexchange.com/questions/21199/is-dy-dx-not-a-ratio
$endgroup$
– Dane
Sep 21 '12 at 17:51
17
$begingroup$
Much of the math curriculum is designed for people who want to understand math, rather than for people whom one should be trying to seduce into understanding math. That's one of the reasons the teaching methods sometimes don't work well.
$endgroup$
– Michael Hardy
Sep 21 '12 at 18:03
8
$begingroup$
Well, it's a full stop.
$endgroup$
– artistoex
Sep 22 '12 at 0:57
14
$begingroup$
@Sachin, I sympathize. We need to put a "full stop" to this kind of teaching.
$endgroup$
– Mikhail Katz
Apr 9 '14 at 9:14
5
$begingroup$
@user72694 I completely agree. It's important for really understanding the notation to know that f(x)dx is the product of f(x) and dx, and represents an infinitesimally small area. The dx is not simply a notational delimiter for the end of the integrand (i.e. "full stop"), it's part of the integrand, part of the product being integrated.
$endgroup$
– Adam Smith
Aug 24 '14 at 20:18