Norm on k[X] or Q[x]?
$begingroup$
While considering specific examples of norms on number fields, I was considering $mathbb{Q}[sqrt{a}]cong frac{mathbb{Q}[x]}{(x^2-a)}$. This led me to the following question:
Given a field $k$, let $k[x]$ be the polynomial ring over $k$. Then the degree of $fin k[x]$ gives one a norm on $k[x]$. Does there exist another norm on $k[x]$ irrespective of the base field $k$?
I'm not sure how to find this even for $mathbb{Q}[x]$. I would appreciate any hints/references.
abstract-algebra number-theory norm polynomial-rings
$endgroup$
add a comment |
$begingroup$
While considering specific examples of norms on number fields, I was considering $mathbb{Q}[sqrt{a}]cong frac{mathbb{Q}[x]}{(x^2-a)}$. This led me to the following question:
Given a field $k$, let $k[x]$ be the polynomial ring over $k$. Then the degree of $fin k[x]$ gives one a norm on $k[x]$. Does there exist another norm on $k[x]$ irrespective of the base field $k$?
I'm not sure how to find this even for $mathbb{Q}[x]$. I would appreciate any hints/references.
abstract-algebra number-theory norm polynomial-rings
$endgroup$
2
$begingroup$
$f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
$endgroup$
– reuns
Jan 8 at 0:54
add a comment |
$begingroup$
While considering specific examples of norms on number fields, I was considering $mathbb{Q}[sqrt{a}]cong frac{mathbb{Q}[x]}{(x^2-a)}$. This led me to the following question:
Given a field $k$, let $k[x]$ be the polynomial ring over $k$. Then the degree of $fin k[x]$ gives one a norm on $k[x]$. Does there exist another norm on $k[x]$ irrespective of the base field $k$?
I'm not sure how to find this even for $mathbb{Q}[x]$. I would appreciate any hints/references.
abstract-algebra number-theory norm polynomial-rings
$endgroup$
While considering specific examples of norms on number fields, I was considering $mathbb{Q}[sqrt{a}]cong frac{mathbb{Q}[x]}{(x^2-a)}$. This led me to the following question:
Given a field $k$, let $k[x]$ be the polynomial ring over $k$. Then the degree of $fin k[x]$ gives one a norm on $k[x]$. Does there exist another norm on $k[x]$ irrespective of the base field $k$?
I'm not sure how to find this even for $mathbb{Q}[x]$. I would appreciate any hints/references.
abstract-algebra number-theory norm polynomial-rings
abstract-algebra number-theory norm polynomial-rings
asked Jan 8 at 0:43
Duttatrey Nath SrivastavaDuttatrey Nath Srivastava
93
93
2
$begingroup$
$f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
$endgroup$
– reuns
Jan 8 at 0:54
add a comment |
2
$begingroup$
$f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
$endgroup$
– reuns
Jan 8 at 0:54
2
2
$begingroup$
$f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
$endgroup$
– reuns
Jan 8 at 0:54
$begingroup$
$f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
$endgroup$
– reuns
Jan 8 at 0:54
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065688%2fnorm-on-kx-or-qx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065688%2fnorm-on-kx-or-qx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
$f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
$endgroup$
– reuns
Jan 8 at 0:54