Norm on k[X] or Q[x]?












0












$begingroup$


While considering specific examples of norms on number fields, I was considering $mathbb{Q}[sqrt{a}]cong frac{mathbb{Q}[x]}{(x^2-a)}$. This led me to the following question:



Given a field $k$, let $k[x]$ be the polynomial ring over $k$. Then the degree of $fin k[x]$ gives one a norm on $k[x]$. Does there exist another norm on $k[x]$ irrespective of the base field $k$?



I'm not sure how to find this even for $mathbb{Q}[x]$. I would appreciate any hints/references.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
    $endgroup$
    – reuns
    Jan 8 at 0:54


















0












$begingroup$


While considering specific examples of norms on number fields, I was considering $mathbb{Q}[sqrt{a}]cong frac{mathbb{Q}[x]}{(x^2-a)}$. This led me to the following question:



Given a field $k$, let $k[x]$ be the polynomial ring over $k$. Then the degree of $fin k[x]$ gives one a norm on $k[x]$. Does there exist another norm on $k[x]$ irrespective of the base field $k$?



I'm not sure how to find this even for $mathbb{Q}[x]$. I would appreciate any hints/references.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
    $endgroup$
    – reuns
    Jan 8 at 0:54
















0












0








0





$begingroup$


While considering specific examples of norms on number fields, I was considering $mathbb{Q}[sqrt{a}]cong frac{mathbb{Q}[x]}{(x^2-a)}$. This led me to the following question:



Given a field $k$, let $k[x]$ be the polynomial ring over $k$. Then the degree of $fin k[x]$ gives one a norm on $k[x]$. Does there exist another norm on $k[x]$ irrespective of the base field $k$?



I'm not sure how to find this even for $mathbb{Q}[x]$. I would appreciate any hints/references.










share|cite|improve this question









$endgroup$




While considering specific examples of norms on number fields, I was considering $mathbb{Q}[sqrt{a}]cong frac{mathbb{Q}[x]}{(x^2-a)}$. This led me to the following question:



Given a field $k$, let $k[x]$ be the polynomial ring over $k$. Then the degree of $fin k[x]$ gives one a norm on $k[x]$. Does there exist another norm on $k[x]$ irrespective of the base field $k$?



I'm not sure how to find this even for $mathbb{Q}[x]$. I would appreciate any hints/references.







abstract-algebra number-theory norm polynomial-rings






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 8 at 0:43









Duttatrey Nath SrivastavaDuttatrey Nath Srivastava

93




93








  • 2




    $begingroup$
    $f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
    $endgroup$
    – reuns
    Jan 8 at 0:54
















  • 2




    $begingroup$
    $f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
    $endgroup$
    – reuns
    Jan 8 at 0:54










2




2




$begingroup$
$f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
$endgroup$
– reuns
Jan 8 at 0:54






$begingroup$
$f mapsto q^{-deg(f)}$ is a non Archimedian absolute value on $k[x]$. For any number field $k$ let $sigma : k to mathbb{C}$ and $f^sigma(x)= sum_{n=0}^{deg(f)} sigma(a_n) x^n$ then $f mapsto |f^sigma(pi)|$ is an Archimedian absolute value on $k[x]$. Of course $pi$ can be replaced by any transcendental complex number. If $q >1 $ then the completion of $k(x), f mapsto q^{-deg(f)}$ is $k((x))$. The completion of $k(x), f mapsto |f^sigma(pi)|$ is $cong mathbb{R}$ or $mathbb{C}$.
$endgroup$
– reuns
Jan 8 at 0:54












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065688%2fnorm-on-kx-or-qx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065688%2fnorm-on-kx-or-qx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

張江高科駅