if $A>0$, prove that there exists $xin{pm1}^n$, such that $(Ax)_ineq0$ for all $i$
$begingroup$
If $Ainmathbb{R}^{ntimes n}, A>0$ (symmetric, positive definite), prove that there exist $x=begin{bmatrix} sigma_1 \ vdots \ sigma_nend{bmatrix}$, $sigma_iin{pm1}$, such that $(Ax)_ineq0$ for all $i$.
Example: If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=begin{bmatrix}0\2\2end{bmatrix}$ for $x=begin{bmatrix}1\1\1end{bmatrix}$,
but $Ax=begin{bmatrix}4\-4\-4end{bmatrix}$ for $x=begin{bmatrix}1\-1\-1end{bmatrix}$.
From simulation of $3times3$ and $4times4$ matrices, it turns out to be true.
linear-algebra positive-definite
$endgroup$
add a comment |
$begingroup$
If $Ainmathbb{R}^{ntimes n}, A>0$ (symmetric, positive definite), prove that there exist $x=begin{bmatrix} sigma_1 \ vdots \ sigma_nend{bmatrix}$, $sigma_iin{pm1}$, such that $(Ax)_ineq0$ for all $i$.
Example: If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=begin{bmatrix}0\2\2end{bmatrix}$ for $x=begin{bmatrix}1\1\1end{bmatrix}$,
but $Ax=begin{bmatrix}4\-4\-4end{bmatrix}$ for $x=begin{bmatrix}1\-1\-1end{bmatrix}$.
From simulation of $3times3$ and $4times4$ matrices, it turns out to be true.
linear-algebra positive-definite
$endgroup$
$begingroup$
I am sure I have see a solution on MSE but have no idea how to search for it :-(.
$endgroup$
– copper.hat
Jan 9 at 19:15
add a comment |
$begingroup$
If $Ainmathbb{R}^{ntimes n}, A>0$ (symmetric, positive definite), prove that there exist $x=begin{bmatrix} sigma_1 \ vdots \ sigma_nend{bmatrix}$, $sigma_iin{pm1}$, such that $(Ax)_ineq0$ for all $i$.
Example: If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=begin{bmatrix}0\2\2end{bmatrix}$ for $x=begin{bmatrix}1\1\1end{bmatrix}$,
but $Ax=begin{bmatrix}4\-4\-4end{bmatrix}$ for $x=begin{bmatrix}1\-1\-1end{bmatrix}$.
From simulation of $3times3$ and $4times4$ matrices, it turns out to be true.
linear-algebra positive-definite
$endgroup$
If $Ainmathbb{R}^{ntimes n}, A>0$ (symmetric, positive definite), prove that there exist $x=begin{bmatrix} sigma_1 \ vdots \ sigma_nend{bmatrix}$, $sigma_iin{pm1}$, such that $(Ax)_ineq0$ for all $i$.
Example: If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=begin{bmatrix}0\2\2end{bmatrix}$ for $x=begin{bmatrix}1\1\1end{bmatrix}$,
but $Ax=begin{bmatrix}4\-4\-4end{bmatrix}$ for $x=begin{bmatrix}1\-1\-1end{bmatrix}$.
From simulation of $3times3$ and $4times4$ matrices, it turns out to be true.
linear-algebra positive-definite
linear-algebra positive-definite
edited Jan 8 at 2:22
El borito
668216
668216
asked Jan 8 at 2:03
LeeLee
330111
330111
$begingroup$
I am sure I have see a solution on MSE but have no idea how to search for it :-(.
$endgroup$
– copper.hat
Jan 9 at 19:15
add a comment |
$begingroup$
I am sure I have see a solution on MSE but have no idea how to search for it :-(.
$endgroup$
– copper.hat
Jan 9 at 19:15
$begingroup$
I am sure I have see a solution on MSE but have no idea how to search for it :-(.
$endgroup$
– copper.hat
Jan 9 at 19:15
$begingroup$
I am sure I have see a solution on MSE but have no idea how to search for it :-(.
$endgroup$
– copper.hat
Jan 9 at 19:15
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065728%2fif-a0-prove-that-there-exists-x-in-pm1-n-such-that-ax-i-neq0-for%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065728%2fif-a0-prove-that-there-exists-x-in-pm1-n-such-that-ax-i-neq0-for%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I am sure I have see a solution on MSE but have no idea how to search for it :-(.
$endgroup$
– copper.hat
Jan 9 at 19:15