If an immersion $X$ maps circles into planes then its image $X(mathbb{D})$ is homeomorphic to the cylinder.
$begingroup$
Let $X:left( u,vright)in mathbb{D}backslash left{ 0right}subseteqmathbb{R}^2 mathbb{%
longmapsto }left( xleft( u,vright) ,yleft( u,vright) ,zleft(
u,vright) right) in mathbb{mathbb{R}}^{3}$ an minimal immersion, where $mathbb{D=}left{ pin mathbb{R}^{2};leftVert prightVert <1right} $ is unitary open disc.
If $X$ maps circles into planes (coordinate function $z$ constant) then $X(mathbb{D})$ is homeomorphic to cylindric.
I do not know if all these assumptions are necessary, but that's what I have.
Can you help me prove that? I studied geometry and topology a long time ago.
general-topology geometry analysis differential-geometry differential-topology
$endgroup$
add a comment |
$begingroup$
Let $X:left( u,vright)in mathbb{D}backslash left{ 0right}subseteqmathbb{R}^2 mathbb{%
longmapsto }left( xleft( u,vright) ,yleft( u,vright) ,zleft(
u,vright) right) in mathbb{mathbb{R}}^{3}$ an minimal immersion, where $mathbb{D=}left{ pin mathbb{R}^{2};leftVert prightVert <1right} $ is unitary open disc.
If $X$ maps circles into planes (coordinate function $z$ constant) then $X(mathbb{D})$ is homeomorphic to cylindric.
I do not know if all these assumptions are necessary, but that's what I have.
Can you help me prove that? I studied geometry and topology a long time ago.
general-topology geometry analysis differential-geometry differential-topology
$endgroup$
$begingroup$
How can be $z=(u,v)$? z is supposed to belong to $mathbb{R}$
$endgroup$
– ecrin
Jan 12 at 20:29
$begingroup$
$z:mathbb{D}rightarrowmathbb{mathbb{R}}$ is coordinate function. I edited the post.
$endgroup$
– Takashi
Jan 13 at 0:44
$begingroup$
If by $mathbb{D}$ you mean the unit disk (en.wikipedia.org/wiki/Unit_disk) then $0in mathbb{D}$ and so what you have written is false: $mathbb{D}$ is not a subset of $mathbb {R}^2setminus{0}$.
$endgroup$
– pre-kidney
Jan 13 at 2:52
$begingroup$
@pre-kidney. I corrected, thanks.
$endgroup$
– Takashi
Jan 13 at 13:32
add a comment |
$begingroup$
Let $X:left( u,vright)in mathbb{D}backslash left{ 0right}subseteqmathbb{R}^2 mathbb{%
longmapsto }left( xleft( u,vright) ,yleft( u,vright) ,zleft(
u,vright) right) in mathbb{mathbb{R}}^{3}$ an minimal immersion, where $mathbb{D=}left{ pin mathbb{R}^{2};leftVert prightVert <1right} $ is unitary open disc.
If $X$ maps circles into planes (coordinate function $z$ constant) then $X(mathbb{D})$ is homeomorphic to cylindric.
I do not know if all these assumptions are necessary, but that's what I have.
Can you help me prove that? I studied geometry and topology a long time ago.
general-topology geometry analysis differential-geometry differential-topology
$endgroup$
Let $X:left( u,vright)in mathbb{D}backslash left{ 0right}subseteqmathbb{R}^2 mathbb{%
longmapsto }left( xleft( u,vright) ,yleft( u,vright) ,zleft(
u,vright) right) in mathbb{mathbb{R}}^{3}$ an minimal immersion, where $mathbb{D=}left{ pin mathbb{R}^{2};leftVert prightVert <1right} $ is unitary open disc.
If $X$ maps circles into planes (coordinate function $z$ constant) then $X(mathbb{D})$ is homeomorphic to cylindric.
I do not know if all these assumptions are necessary, but that's what I have.
Can you help me prove that? I studied geometry and topology a long time ago.
general-topology geometry analysis differential-geometry differential-topology
general-topology geometry analysis differential-geometry differential-topology
edited Jan 22 at 18:22
Lord Shark the Unknown
104k1160132
104k1160132
asked Jan 7 at 23:32
TakashiTakashi
17917
17917
$begingroup$
How can be $z=(u,v)$? z is supposed to belong to $mathbb{R}$
$endgroup$
– ecrin
Jan 12 at 20:29
$begingroup$
$z:mathbb{D}rightarrowmathbb{mathbb{R}}$ is coordinate function. I edited the post.
$endgroup$
– Takashi
Jan 13 at 0:44
$begingroup$
If by $mathbb{D}$ you mean the unit disk (en.wikipedia.org/wiki/Unit_disk) then $0in mathbb{D}$ and so what you have written is false: $mathbb{D}$ is not a subset of $mathbb {R}^2setminus{0}$.
$endgroup$
– pre-kidney
Jan 13 at 2:52
$begingroup$
@pre-kidney. I corrected, thanks.
$endgroup$
– Takashi
Jan 13 at 13:32
add a comment |
$begingroup$
How can be $z=(u,v)$? z is supposed to belong to $mathbb{R}$
$endgroup$
– ecrin
Jan 12 at 20:29
$begingroup$
$z:mathbb{D}rightarrowmathbb{mathbb{R}}$ is coordinate function. I edited the post.
$endgroup$
– Takashi
Jan 13 at 0:44
$begingroup$
If by $mathbb{D}$ you mean the unit disk (en.wikipedia.org/wiki/Unit_disk) then $0in mathbb{D}$ and so what you have written is false: $mathbb{D}$ is not a subset of $mathbb {R}^2setminus{0}$.
$endgroup$
– pre-kidney
Jan 13 at 2:52
$begingroup$
@pre-kidney. I corrected, thanks.
$endgroup$
– Takashi
Jan 13 at 13:32
$begingroup$
How can be $z=(u,v)$? z is supposed to belong to $mathbb{R}$
$endgroup$
– ecrin
Jan 12 at 20:29
$begingroup$
How can be $z=(u,v)$? z is supposed to belong to $mathbb{R}$
$endgroup$
– ecrin
Jan 12 at 20:29
$begingroup$
$z:mathbb{D}rightarrowmathbb{mathbb{R}}$ is coordinate function. I edited the post.
$endgroup$
– Takashi
Jan 13 at 0:44
$begingroup$
$z:mathbb{D}rightarrowmathbb{mathbb{R}}$ is coordinate function. I edited the post.
$endgroup$
– Takashi
Jan 13 at 0:44
$begingroup$
If by $mathbb{D}$ you mean the unit disk (en.wikipedia.org/wiki/Unit_disk) then $0in mathbb{D}$ and so what you have written is false: $mathbb{D}$ is not a subset of $mathbb {R}^2setminus{0}$.
$endgroup$
– pre-kidney
Jan 13 at 2:52
$begingroup$
If by $mathbb{D}$ you mean the unit disk (en.wikipedia.org/wiki/Unit_disk) then $0in mathbb{D}$ and so what you have written is false: $mathbb{D}$ is not a subset of $mathbb {R}^2setminus{0}$.
$endgroup$
– pre-kidney
Jan 13 at 2:52
$begingroup$
@pre-kidney. I corrected, thanks.
$endgroup$
– Takashi
Jan 13 at 13:32
$begingroup$
@pre-kidney. I corrected, thanks.
$endgroup$
– Takashi
Jan 13 at 13:32
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065639%2fif-an-immersion-x-maps-circles-into-planes-then-its-image-x-mathbbd-is-h%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065639%2fif-an-immersion-x-maps-circles-into-planes-then-its-image-x-mathbbd-is-h%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
How can be $z=(u,v)$? z is supposed to belong to $mathbb{R}$
$endgroup$
– ecrin
Jan 12 at 20:29
$begingroup$
$z:mathbb{D}rightarrowmathbb{mathbb{R}}$ is coordinate function. I edited the post.
$endgroup$
– Takashi
Jan 13 at 0:44
$begingroup$
If by $mathbb{D}$ you mean the unit disk (en.wikipedia.org/wiki/Unit_disk) then $0in mathbb{D}$ and so what you have written is false: $mathbb{D}$ is not a subset of $mathbb {R}^2setminus{0}$.
$endgroup$
– pre-kidney
Jan 13 at 2:52
$begingroup$
@pre-kidney. I corrected, thanks.
$endgroup$
– Takashi
Jan 13 at 13:32