Coordinate basis and coordinate systems
$begingroup$
When we introduce coordinate systems, like spherical coordinates, one usually does it with respect to cartesian coordinates.
What would be the right way to derive the (for example) spherical coordinate basis of the tangent space at a point of a manifold(without using cartesian coordinates at all)?
I mean, I have seen the definition of the tangent space and the coordinate basis, but how does one compute it in practice?
And deduce the metric tensor from the coordinate basis?
differential-geometry manifolds coordinate-systems tangent-spaces curvilinear-coordinates
$endgroup$
add a comment |
$begingroup$
When we introduce coordinate systems, like spherical coordinates, one usually does it with respect to cartesian coordinates.
What would be the right way to derive the (for example) spherical coordinate basis of the tangent space at a point of a manifold(without using cartesian coordinates at all)?
I mean, I have seen the definition of the tangent space and the coordinate basis, but how does one compute it in practice?
And deduce the metric tensor from the coordinate basis?
differential-geometry manifolds coordinate-systems tangent-spaces curvilinear-coordinates
$endgroup$
add a comment |
$begingroup$
When we introduce coordinate systems, like spherical coordinates, one usually does it with respect to cartesian coordinates.
What would be the right way to derive the (for example) spherical coordinate basis of the tangent space at a point of a manifold(without using cartesian coordinates at all)?
I mean, I have seen the definition of the tangent space and the coordinate basis, but how does one compute it in practice?
And deduce the metric tensor from the coordinate basis?
differential-geometry manifolds coordinate-systems tangent-spaces curvilinear-coordinates
$endgroup$
When we introduce coordinate systems, like spherical coordinates, one usually does it with respect to cartesian coordinates.
What would be the right way to derive the (for example) spherical coordinate basis of the tangent space at a point of a manifold(without using cartesian coordinates at all)?
I mean, I have seen the definition of the tangent space and the coordinate basis, but how does one compute it in practice?
And deduce the metric tensor from the coordinate basis?
differential-geometry manifolds coordinate-systems tangent-spaces curvilinear-coordinates
differential-geometry manifolds coordinate-systems tangent-spaces curvilinear-coordinates
edited Jan 9 at 15:29
KaptenZ
asked Jan 9 at 15:20
KaptenZKaptenZ
187
187
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067566%2fcoordinate-basis-and-coordinate-systems%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067566%2fcoordinate-basis-and-coordinate-systems%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown