Find the limit $lim_{x to 0} (frac{1}{ln (x+sqrt{1+x^2)} }- frac{1}{ln( x+1)} ) =?$ [duplicate]












2















This question already has an answer here:




  • Proving $limlimits_{xto0}left(frac{1}{log(x+sqrt{1+x^2})}-frac{1}{log(1+x)}right) =-frac12$

    2 answers




Find the limit :
$$lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2}) }- frac{1}{ln( x+1)} right) =?$$
My Try :
$$lim_{x to 0} left(frac{ln(x+1)-ln (x+sqrt{1+x^2})}{ln (x+sqrt{1+x^2})ln(x+1) }right)=?$$



$$lim_{x to 0} dfrac{lnleft(dfrac{x+1}{x+sqrt{1+x^2}}right)}{ln (x+sqrt{1+x^2})ln(x+1) }=?$$



Now what ?










share|cite|improve this question















marked as duplicate by Paramanand Singh calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
2 days ago


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.




















    2















    This question already has an answer here:




    • Proving $limlimits_{xto0}left(frac{1}{log(x+sqrt{1+x^2})}-frac{1}{log(1+x)}right) =-frac12$

      2 answers




    Find the limit :
    $$lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2}) }- frac{1}{ln( x+1)} right) =?$$
    My Try :
    $$lim_{x to 0} left(frac{ln(x+1)-ln (x+sqrt{1+x^2})}{ln (x+sqrt{1+x^2})ln(x+1) }right)=?$$



    $$lim_{x to 0} dfrac{lnleft(dfrac{x+1}{x+sqrt{1+x^2}}right)}{ln (x+sqrt{1+x^2})ln(x+1) }=?$$



    Now what ?










    share|cite|improve this question















    marked as duplicate by Paramanand Singh calculus
    Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

    StackExchange.ready(function() {
    if (StackExchange.options.isMobile) return;

    $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
    var $hover = $(this).addClass('hover-bound'),
    $msg = $hover.siblings('.dupe-hammer-message');

    $hover.hover(
    function() {
    $hover.showInfoMessage('', {
    messageElement: $msg.clone().show(),
    transient: false,
    position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
    dismissable: false,
    relativeToBody: true
    });
    },
    function() {
    StackExchange.helpers.removeMessages();
    }
    );
    });
    });
    2 days ago


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















      2












      2








      2








      This question already has an answer here:




      • Proving $limlimits_{xto0}left(frac{1}{log(x+sqrt{1+x^2})}-frac{1}{log(1+x)}right) =-frac12$

        2 answers




      Find the limit :
      $$lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2}) }- frac{1}{ln( x+1)} right) =?$$
      My Try :
      $$lim_{x to 0} left(frac{ln(x+1)-ln (x+sqrt{1+x^2})}{ln (x+sqrt{1+x^2})ln(x+1) }right)=?$$



      $$lim_{x to 0} dfrac{lnleft(dfrac{x+1}{x+sqrt{1+x^2}}right)}{ln (x+sqrt{1+x^2})ln(x+1) }=?$$



      Now what ?










      share|cite|improve this question
















      This question already has an answer here:




      • Proving $limlimits_{xto0}left(frac{1}{log(x+sqrt{1+x^2})}-frac{1}{log(1+x)}right) =-frac12$

        2 answers




      Find the limit :
      $$lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2}) }- frac{1}{ln( x+1)} right) =?$$
      My Try :
      $$lim_{x to 0} left(frac{ln(x+1)-ln (x+sqrt{1+x^2})}{ln (x+sqrt{1+x^2})ln(x+1) }right)=?$$



      $$lim_{x to 0} dfrac{lnleft(dfrac{x+1}{x+sqrt{1+x^2}}right)}{ln (x+sqrt{1+x^2})ln(x+1) }=?$$



      Now what ?





      This question already has an answer here:




      • Proving $limlimits_{xto0}left(frac{1}{log(x+sqrt{1+x^2})}-frac{1}{log(1+x)}right) =-frac12$

        2 answers








      calculus limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      Siong Thye Goh

      98.9k1464116




      98.9k1464116










      asked Dec 26 at 0:34









      Almot1960

      2,487723




      2,487723




      marked as duplicate by Paramanand Singh calculus
      Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      2 days ago


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






      marked as duplicate by Paramanand Singh calculus
      Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      2 days ago


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
























          2 Answers
          2






          active

          oldest

          votes


















          4














          From Taylor expansion,$$ln (x+sqrt{1+x^2})approx ln (1+x+frac12x^2)approx x+frac12x^2-frac12x^2 approx x$$



          $$ln (1+x) approx x-frac{x^2}2$$



          begin{align}
          lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2)} }- frac{1}{ln( x+1)} right)&=lim_{x to 0} left(frac1{x} - frac1{x-frac{x^2}2} right)\
          &=lim_{x to 0} left(frac{-frac{x^2}2}{x(x-frac{x^2}2)} right)\
          &=lim_{x to 0} left( frac{-frac12}{1-frac{x}2}right)\
          &= -frac12
          end{align}






          share|cite|improve this answer





























            1














            Hint: See zero in the limit? See log, trig, exponents or roots? Taylor is your best friend. Apply it to the original expression, of course.






            share|cite|improve this answer




























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4














              From Taylor expansion,$$ln (x+sqrt{1+x^2})approx ln (1+x+frac12x^2)approx x+frac12x^2-frac12x^2 approx x$$



              $$ln (1+x) approx x-frac{x^2}2$$



              begin{align}
              lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2)} }- frac{1}{ln( x+1)} right)&=lim_{x to 0} left(frac1{x} - frac1{x-frac{x^2}2} right)\
              &=lim_{x to 0} left(frac{-frac{x^2}2}{x(x-frac{x^2}2)} right)\
              &=lim_{x to 0} left( frac{-frac12}{1-frac{x}2}right)\
              &= -frac12
              end{align}






              share|cite|improve this answer


























                4














                From Taylor expansion,$$ln (x+sqrt{1+x^2})approx ln (1+x+frac12x^2)approx x+frac12x^2-frac12x^2 approx x$$



                $$ln (1+x) approx x-frac{x^2}2$$



                begin{align}
                lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2)} }- frac{1}{ln( x+1)} right)&=lim_{x to 0} left(frac1{x} - frac1{x-frac{x^2}2} right)\
                &=lim_{x to 0} left(frac{-frac{x^2}2}{x(x-frac{x^2}2)} right)\
                &=lim_{x to 0} left( frac{-frac12}{1-frac{x}2}right)\
                &= -frac12
                end{align}






                share|cite|improve this answer
























                  4












                  4








                  4






                  From Taylor expansion,$$ln (x+sqrt{1+x^2})approx ln (1+x+frac12x^2)approx x+frac12x^2-frac12x^2 approx x$$



                  $$ln (1+x) approx x-frac{x^2}2$$



                  begin{align}
                  lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2)} }- frac{1}{ln( x+1)} right)&=lim_{x to 0} left(frac1{x} - frac1{x-frac{x^2}2} right)\
                  &=lim_{x to 0} left(frac{-frac{x^2}2}{x(x-frac{x^2}2)} right)\
                  &=lim_{x to 0} left( frac{-frac12}{1-frac{x}2}right)\
                  &= -frac12
                  end{align}






                  share|cite|improve this answer












                  From Taylor expansion,$$ln (x+sqrt{1+x^2})approx ln (1+x+frac12x^2)approx x+frac12x^2-frac12x^2 approx x$$



                  $$ln (1+x) approx x-frac{x^2}2$$



                  begin{align}
                  lim_{x to 0} left(frac{1}{ln (x+sqrt{1+x^2)} }- frac{1}{ln( x+1)} right)&=lim_{x to 0} left(frac1{x} - frac1{x-frac{x^2}2} right)\
                  &=lim_{x to 0} left(frac{-frac{x^2}2}{x(x-frac{x^2}2)} right)\
                  &=lim_{x to 0} left( frac{-frac12}{1-frac{x}2}right)\
                  &= -frac12
                  end{align}







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 26 at 1:11









                  Siong Thye Goh

                  98.9k1464116




                  98.9k1464116























                      1














                      Hint: See zero in the limit? See log, trig, exponents or roots? Taylor is your best friend. Apply it to the original expression, of course.






                      share|cite|improve this answer


























                        1














                        Hint: See zero in the limit? See log, trig, exponents or roots? Taylor is your best friend. Apply it to the original expression, of course.






                        share|cite|improve this answer
























                          1












                          1








                          1






                          Hint: See zero in the limit? See log, trig, exponents or roots? Taylor is your best friend. Apply it to the original expression, of course.






                          share|cite|improve this answer












                          Hint: See zero in the limit? See log, trig, exponents or roots? Taylor is your best friend. Apply it to the original expression, of course.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 26 at 0:50









                          Makina

                          1,163115




                          1,163115















                              Popular posts from this blog

                              Human spaceflight

                              Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                              張江高科駅