Monotone matrix norms
[Ciarlet 2.2-10]
- Let $mathscr{S}_n$ be the set of symmetric matrices and $mathscr{S}_n^+$ the subset of non-negative definite symmetric matrices. A matrix norm $|cdot|$ to be monotone if
$$Ainmathscr{S}_n^+; wedge; B-Ainmathscr{S}_n^+ Rightarrow |A| leq |B|.$$
Show that the norms $|cdot|_2$ and $|cdot|_F$ (Frobenus norm) are monotone. - More generally, show that if a matrix norm $|cdot|$ is invariant under unitary transformations, that is, if $|A| = |AU| = |UA|$ for every unitary matrix $U$, then it is monotone.
- Let $|cdot|$ be a monotone norm and $mbox{cond}(cdot)$ the condition number function associated with it. Prove that
$$A,Binmathscr{S}_n^* Rightarrow mbox{cond}(A+B) leq maxleft{mbox{cond}(A),; mbox{cond}(B)right}$$
where $mathscr{S}_n^*$ denotes the subset of positive definite symmetric matrices.
I already have proved (1), and I proved that $lambda_i(A) leq lambda_i(B)$, $forall i=1,2,ldots,n$ and $forall A,B-Ainmathscr{S}_n^+$. But I have had problems in order to prove (2) and (3). For (2), i proved that
begin{eqnarray*}
|A| & = & |U^*AU| = |mbox{diag}(lambda_i(A))|,\[0.3cm]
|B| & = & |V^*BV| = |mbox{diag}(lambda_i(B))|.
end{eqnarray*}
but I don't know what I should do next. Please help me and thanks in advance.
linear-algebra norm
bumped to the homepage by Community♦ 2 days ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
[Ciarlet 2.2-10]
- Let $mathscr{S}_n$ be the set of symmetric matrices and $mathscr{S}_n^+$ the subset of non-negative definite symmetric matrices. A matrix norm $|cdot|$ to be monotone if
$$Ainmathscr{S}_n^+; wedge; B-Ainmathscr{S}_n^+ Rightarrow |A| leq |B|.$$
Show that the norms $|cdot|_2$ and $|cdot|_F$ (Frobenus norm) are monotone. - More generally, show that if a matrix norm $|cdot|$ is invariant under unitary transformations, that is, if $|A| = |AU| = |UA|$ for every unitary matrix $U$, then it is monotone.
- Let $|cdot|$ be a monotone norm and $mbox{cond}(cdot)$ the condition number function associated with it. Prove that
$$A,Binmathscr{S}_n^* Rightarrow mbox{cond}(A+B) leq maxleft{mbox{cond}(A),; mbox{cond}(B)right}$$
where $mathscr{S}_n^*$ denotes the subset of positive definite symmetric matrices.
I already have proved (1), and I proved that $lambda_i(A) leq lambda_i(B)$, $forall i=1,2,ldots,n$ and $forall A,B-Ainmathscr{S}_n^+$. But I have had problems in order to prove (2) and (3). For (2), i proved that
begin{eqnarray*}
|A| & = & |U^*AU| = |mbox{diag}(lambda_i(A))|,\[0.3cm]
|B| & = & |V^*BV| = |mbox{diag}(lambda_i(B))|.
end{eqnarray*}
but I don't know what I should do next. Please help me and thanks in advance.
linear-algebra norm
bumped to the homepage by Community♦ 2 days ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
[Ciarlet 2.2-10]
- Let $mathscr{S}_n$ be the set of symmetric matrices and $mathscr{S}_n^+$ the subset of non-negative definite symmetric matrices. A matrix norm $|cdot|$ to be monotone if
$$Ainmathscr{S}_n^+; wedge; B-Ainmathscr{S}_n^+ Rightarrow |A| leq |B|.$$
Show that the norms $|cdot|_2$ and $|cdot|_F$ (Frobenus norm) are monotone. - More generally, show that if a matrix norm $|cdot|$ is invariant under unitary transformations, that is, if $|A| = |AU| = |UA|$ for every unitary matrix $U$, then it is monotone.
- Let $|cdot|$ be a monotone norm and $mbox{cond}(cdot)$ the condition number function associated with it. Prove that
$$A,Binmathscr{S}_n^* Rightarrow mbox{cond}(A+B) leq maxleft{mbox{cond}(A),; mbox{cond}(B)right}$$
where $mathscr{S}_n^*$ denotes the subset of positive definite symmetric matrices.
I already have proved (1), and I proved that $lambda_i(A) leq lambda_i(B)$, $forall i=1,2,ldots,n$ and $forall A,B-Ainmathscr{S}_n^+$. But I have had problems in order to prove (2) and (3). For (2), i proved that
begin{eqnarray*}
|A| & = & |U^*AU| = |mbox{diag}(lambda_i(A))|,\[0.3cm]
|B| & = & |V^*BV| = |mbox{diag}(lambda_i(B))|.
end{eqnarray*}
but I don't know what I should do next. Please help me and thanks in advance.
linear-algebra norm
[Ciarlet 2.2-10]
- Let $mathscr{S}_n$ be the set of symmetric matrices and $mathscr{S}_n^+$ the subset of non-negative definite symmetric matrices. A matrix norm $|cdot|$ to be monotone if
$$Ainmathscr{S}_n^+; wedge; B-Ainmathscr{S}_n^+ Rightarrow |A| leq |B|.$$
Show that the norms $|cdot|_2$ and $|cdot|_F$ (Frobenus norm) are monotone. - More generally, show that if a matrix norm $|cdot|$ is invariant under unitary transformations, that is, if $|A| = |AU| = |UA|$ for every unitary matrix $U$, then it is monotone.
- Let $|cdot|$ be a monotone norm and $mbox{cond}(cdot)$ the condition number function associated with it. Prove that
$$A,Binmathscr{S}_n^* Rightarrow mbox{cond}(A+B) leq maxleft{mbox{cond}(A),; mbox{cond}(B)right}$$
where $mathscr{S}_n^*$ denotes the subset of positive definite symmetric matrices.
I already have proved (1), and I proved that $lambda_i(A) leq lambda_i(B)$, $forall i=1,2,ldots,n$ and $forall A,B-Ainmathscr{S}_n^+$. But I have had problems in order to prove (2) and (3). For (2), i proved that
begin{eqnarray*}
|A| & = & |U^*AU| = |mbox{diag}(lambda_i(A))|,\[0.3cm]
|B| & = & |V^*BV| = |mbox{diag}(lambda_i(B))|.
end{eqnarray*}
but I don't know what I should do next. Please help me and thanks in advance.
linear-algebra norm
linear-algebra norm
edited Feb 26 '17 at 3:21
Martin Argerami
124k1176174
124k1176174
asked Apr 27 '13 at 17:56
FASCH
652926
652926
bumped to the homepage by Community♦ 2 days ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
bumped to the homepage by Community♦ 2 days ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
For part 2:
To simplify notation, define a function $g:mathbb R^ntomathbb R$ by $g(x_1,ldots,x_n)=|text{diag}(x_j)|$. Since $|cdot|$ is a unitarily invariant matrix norm, we have that
$g$ is a norm on $mathbb R^n$
$g(x_1,ldots,x_n)=g(|x_1|,ldots,|x_n|)$ (this comes from the unitary invariance)
$g(x_1,ldots,x_n)=g(x_{sigma(1)},ldots,x_{sigma(n)})$ for any permutation $sigma$.
Such a $g$ is called a gauge function.
Now, if $tin[0,1]$, then (writing $x=(x_1,ldots,x_n)$)
begin{align}
g(tx_1,x_2,ldots,x_n)&=gleft(frac{1+t}2,x+frac{1-t}2(-x_1,x_2,ldots,x_nright)\ \
&leqfrac{1+t}2,g(x)+frac{1-t}2g(-x_1,x_2,ldots,x_n)\ \
&=frac{1+t}2g(x)+frac{1-t}2g(x)=g(x).
end{align}
Applying the above inductively, we get
$$
g(t_1x_1,ldots,t_nx_n)leq g(x)
$$
whenever $t_1,ldots,t_nin [0,1]$.
Since $0leqlambda_j(A)leqlambda_j(B)$ for all $j$, we have $lambda_j(A)=t_jlambda_j(B)$ for appropriate $t_1,ldots,t_nin[0,1]$.
Then
begin{align}
|A|&=|text{diag}(lambda_j(A))|=|text{diag}(t_j,lambda_j(B))|\ \
&leq |text{diag}(lambda_j(B))|=|B|
end{align}
For part 3, I know of the original proof by Marshall and Olkin (1973). Assume $text{cond}(A)leqtext{cond}(B)$. Let $A'=A/|A|$, $B'=B/|B|$, and $t=frac{|A|}{|A|+|B|}$.
We have, in the new notation, that $$tag{0}|(A')^{-1}|leq|(B')^{-1}|.$$ And
$$tag{1}
|tA'+(1-t)B'|leq t|A'|+(1-t)|B'|=1.
$$
Also, as the inverse is convex on the set of positive-definite matrices,
$$tag{2}
(tA'+(1-t)B')^{-1}leq t(A')^{-1}+(1-t)(B')^{-1}.
$$
Thus, using $(2)$ and $(0)$,
begin{align}tag{3}
|(tA'+(1-t)B')^{-1}|&leq|t(A')^{-1}+(1-t)(B')^{-1}|\
&leq t|(A')^{-1}|+(1-t)|(B')^{-1}|\ &leq|(B')^{-1}|
end{align}
Now, combining $(1)$, and $(3)$,
begin{align}tag{4}
|tA'+(1-t)B'|,|(tA'+(1-t)B')^{-1}|&leq |(tA'+(1-t)B')^{-1}|leq|(B')^{-1}|.
end{align}
If we now use the definitions of $A'$ and $B'$, we get
$$
tA'+(1-t)B'=frac1{|A|+|B|},left(A+Bright), (B')^{-1}=|B|,B^{-1}.
$$
We may thus rewrite $(4)$ as
$$
|A+B|,|(A+B)^{-1}|leq |B|,|B^{-1}|,
$$
as desired.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f374500%2fmonotone-matrix-norms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
For part 2:
To simplify notation, define a function $g:mathbb R^ntomathbb R$ by $g(x_1,ldots,x_n)=|text{diag}(x_j)|$. Since $|cdot|$ is a unitarily invariant matrix norm, we have that
$g$ is a norm on $mathbb R^n$
$g(x_1,ldots,x_n)=g(|x_1|,ldots,|x_n|)$ (this comes from the unitary invariance)
$g(x_1,ldots,x_n)=g(x_{sigma(1)},ldots,x_{sigma(n)})$ for any permutation $sigma$.
Such a $g$ is called a gauge function.
Now, if $tin[0,1]$, then (writing $x=(x_1,ldots,x_n)$)
begin{align}
g(tx_1,x_2,ldots,x_n)&=gleft(frac{1+t}2,x+frac{1-t}2(-x_1,x_2,ldots,x_nright)\ \
&leqfrac{1+t}2,g(x)+frac{1-t}2g(-x_1,x_2,ldots,x_n)\ \
&=frac{1+t}2g(x)+frac{1-t}2g(x)=g(x).
end{align}
Applying the above inductively, we get
$$
g(t_1x_1,ldots,t_nx_n)leq g(x)
$$
whenever $t_1,ldots,t_nin [0,1]$.
Since $0leqlambda_j(A)leqlambda_j(B)$ for all $j$, we have $lambda_j(A)=t_jlambda_j(B)$ for appropriate $t_1,ldots,t_nin[0,1]$.
Then
begin{align}
|A|&=|text{diag}(lambda_j(A))|=|text{diag}(t_j,lambda_j(B))|\ \
&leq |text{diag}(lambda_j(B))|=|B|
end{align}
For part 3, I know of the original proof by Marshall and Olkin (1973). Assume $text{cond}(A)leqtext{cond}(B)$. Let $A'=A/|A|$, $B'=B/|B|$, and $t=frac{|A|}{|A|+|B|}$.
We have, in the new notation, that $$tag{0}|(A')^{-1}|leq|(B')^{-1}|.$$ And
$$tag{1}
|tA'+(1-t)B'|leq t|A'|+(1-t)|B'|=1.
$$
Also, as the inverse is convex on the set of positive-definite matrices,
$$tag{2}
(tA'+(1-t)B')^{-1}leq t(A')^{-1}+(1-t)(B')^{-1}.
$$
Thus, using $(2)$ and $(0)$,
begin{align}tag{3}
|(tA'+(1-t)B')^{-1}|&leq|t(A')^{-1}+(1-t)(B')^{-1}|\
&leq t|(A')^{-1}|+(1-t)|(B')^{-1}|\ &leq|(B')^{-1}|
end{align}
Now, combining $(1)$, and $(3)$,
begin{align}tag{4}
|tA'+(1-t)B'|,|(tA'+(1-t)B')^{-1}|&leq |(tA'+(1-t)B')^{-1}|leq|(B')^{-1}|.
end{align}
If we now use the definitions of $A'$ and $B'$, we get
$$
tA'+(1-t)B'=frac1{|A|+|B|},left(A+Bright), (B')^{-1}=|B|,B^{-1}.
$$
We may thus rewrite $(4)$ as
$$
|A+B|,|(A+B)^{-1}|leq |B|,|B^{-1}|,
$$
as desired.
add a comment |
For part 2:
To simplify notation, define a function $g:mathbb R^ntomathbb R$ by $g(x_1,ldots,x_n)=|text{diag}(x_j)|$. Since $|cdot|$ is a unitarily invariant matrix norm, we have that
$g$ is a norm on $mathbb R^n$
$g(x_1,ldots,x_n)=g(|x_1|,ldots,|x_n|)$ (this comes from the unitary invariance)
$g(x_1,ldots,x_n)=g(x_{sigma(1)},ldots,x_{sigma(n)})$ for any permutation $sigma$.
Such a $g$ is called a gauge function.
Now, if $tin[0,1]$, then (writing $x=(x_1,ldots,x_n)$)
begin{align}
g(tx_1,x_2,ldots,x_n)&=gleft(frac{1+t}2,x+frac{1-t}2(-x_1,x_2,ldots,x_nright)\ \
&leqfrac{1+t}2,g(x)+frac{1-t}2g(-x_1,x_2,ldots,x_n)\ \
&=frac{1+t}2g(x)+frac{1-t}2g(x)=g(x).
end{align}
Applying the above inductively, we get
$$
g(t_1x_1,ldots,t_nx_n)leq g(x)
$$
whenever $t_1,ldots,t_nin [0,1]$.
Since $0leqlambda_j(A)leqlambda_j(B)$ for all $j$, we have $lambda_j(A)=t_jlambda_j(B)$ for appropriate $t_1,ldots,t_nin[0,1]$.
Then
begin{align}
|A|&=|text{diag}(lambda_j(A))|=|text{diag}(t_j,lambda_j(B))|\ \
&leq |text{diag}(lambda_j(B))|=|B|
end{align}
For part 3, I know of the original proof by Marshall and Olkin (1973). Assume $text{cond}(A)leqtext{cond}(B)$. Let $A'=A/|A|$, $B'=B/|B|$, and $t=frac{|A|}{|A|+|B|}$.
We have, in the new notation, that $$tag{0}|(A')^{-1}|leq|(B')^{-1}|.$$ And
$$tag{1}
|tA'+(1-t)B'|leq t|A'|+(1-t)|B'|=1.
$$
Also, as the inverse is convex on the set of positive-definite matrices,
$$tag{2}
(tA'+(1-t)B')^{-1}leq t(A')^{-1}+(1-t)(B')^{-1}.
$$
Thus, using $(2)$ and $(0)$,
begin{align}tag{3}
|(tA'+(1-t)B')^{-1}|&leq|t(A')^{-1}+(1-t)(B')^{-1}|\
&leq t|(A')^{-1}|+(1-t)|(B')^{-1}|\ &leq|(B')^{-1}|
end{align}
Now, combining $(1)$, and $(3)$,
begin{align}tag{4}
|tA'+(1-t)B'|,|(tA'+(1-t)B')^{-1}|&leq |(tA'+(1-t)B')^{-1}|leq|(B')^{-1}|.
end{align}
If we now use the definitions of $A'$ and $B'$, we get
$$
tA'+(1-t)B'=frac1{|A|+|B|},left(A+Bright), (B')^{-1}=|B|,B^{-1}.
$$
We may thus rewrite $(4)$ as
$$
|A+B|,|(A+B)^{-1}|leq |B|,|B^{-1}|,
$$
as desired.
add a comment |
For part 2:
To simplify notation, define a function $g:mathbb R^ntomathbb R$ by $g(x_1,ldots,x_n)=|text{diag}(x_j)|$. Since $|cdot|$ is a unitarily invariant matrix norm, we have that
$g$ is a norm on $mathbb R^n$
$g(x_1,ldots,x_n)=g(|x_1|,ldots,|x_n|)$ (this comes from the unitary invariance)
$g(x_1,ldots,x_n)=g(x_{sigma(1)},ldots,x_{sigma(n)})$ for any permutation $sigma$.
Such a $g$ is called a gauge function.
Now, if $tin[0,1]$, then (writing $x=(x_1,ldots,x_n)$)
begin{align}
g(tx_1,x_2,ldots,x_n)&=gleft(frac{1+t}2,x+frac{1-t}2(-x_1,x_2,ldots,x_nright)\ \
&leqfrac{1+t}2,g(x)+frac{1-t}2g(-x_1,x_2,ldots,x_n)\ \
&=frac{1+t}2g(x)+frac{1-t}2g(x)=g(x).
end{align}
Applying the above inductively, we get
$$
g(t_1x_1,ldots,t_nx_n)leq g(x)
$$
whenever $t_1,ldots,t_nin [0,1]$.
Since $0leqlambda_j(A)leqlambda_j(B)$ for all $j$, we have $lambda_j(A)=t_jlambda_j(B)$ for appropriate $t_1,ldots,t_nin[0,1]$.
Then
begin{align}
|A|&=|text{diag}(lambda_j(A))|=|text{diag}(t_j,lambda_j(B))|\ \
&leq |text{diag}(lambda_j(B))|=|B|
end{align}
For part 3, I know of the original proof by Marshall and Olkin (1973). Assume $text{cond}(A)leqtext{cond}(B)$. Let $A'=A/|A|$, $B'=B/|B|$, and $t=frac{|A|}{|A|+|B|}$.
We have, in the new notation, that $$tag{0}|(A')^{-1}|leq|(B')^{-1}|.$$ And
$$tag{1}
|tA'+(1-t)B'|leq t|A'|+(1-t)|B'|=1.
$$
Also, as the inverse is convex on the set of positive-definite matrices,
$$tag{2}
(tA'+(1-t)B')^{-1}leq t(A')^{-1}+(1-t)(B')^{-1}.
$$
Thus, using $(2)$ and $(0)$,
begin{align}tag{3}
|(tA'+(1-t)B')^{-1}|&leq|t(A')^{-1}+(1-t)(B')^{-1}|\
&leq t|(A')^{-1}|+(1-t)|(B')^{-1}|\ &leq|(B')^{-1}|
end{align}
Now, combining $(1)$, and $(3)$,
begin{align}tag{4}
|tA'+(1-t)B'|,|(tA'+(1-t)B')^{-1}|&leq |(tA'+(1-t)B')^{-1}|leq|(B')^{-1}|.
end{align}
If we now use the definitions of $A'$ and $B'$, we get
$$
tA'+(1-t)B'=frac1{|A|+|B|},left(A+Bright), (B')^{-1}=|B|,B^{-1}.
$$
We may thus rewrite $(4)$ as
$$
|A+B|,|(A+B)^{-1}|leq |B|,|B^{-1}|,
$$
as desired.
For part 2:
To simplify notation, define a function $g:mathbb R^ntomathbb R$ by $g(x_1,ldots,x_n)=|text{diag}(x_j)|$. Since $|cdot|$ is a unitarily invariant matrix norm, we have that
$g$ is a norm on $mathbb R^n$
$g(x_1,ldots,x_n)=g(|x_1|,ldots,|x_n|)$ (this comes from the unitary invariance)
$g(x_1,ldots,x_n)=g(x_{sigma(1)},ldots,x_{sigma(n)})$ for any permutation $sigma$.
Such a $g$ is called a gauge function.
Now, if $tin[0,1]$, then (writing $x=(x_1,ldots,x_n)$)
begin{align}
g(tx_1,x_2,ldots,x_n)&=gleft(frac{1+t}2,x+frac{1-t}2(-x_1,x_2,ldots,x_nright)\ \
&leqfrac{1+t}2,g(x)+frac{1-t}2g(-x_1,x_2,ldots,x_n)\ \
&=frac{1+t}2g(x)+frac{1-t}2g(x)=g(x).
end{align}
Applying the above inductively, we get
$$
g(t_1x_1,ldots,t_nx_n)leq g(x)
$$
whenever $t_1,ldots,t_nin [0,1]$.
Since $0leqlambda_j(A)leqlambda_j(B)$ for all $j$, we have $lambda_j(A)=t_jlambda_j(B)$ for appropriate $t_1,ldots,t_nin[0,1]$.
Then
begin{align}
|A|&=|text{diag}(lambda_j(A))|=|text{diag}(t_j,lambda_j(B))|\ \
&leq |text{diag}(lambda_j(B))|=|B|
end{align}
For part 3, I know of the original proof by Marshall and Olkin (1973). Assume $text{cond}(A)leqtext{cond}(B)$. Let $A'=A/|A|$, $B'=B/|B|$, and $t=frac{|A|}{|A|+|B|}$.
We have, in the new notation, that $$tag{0}|(A')^{-1}|leq|(B')^{-1}|.$$ And
$$tag{1}
|tA'+(1-t)B'|leq t|A'|+(1-t)|B'|=1.
$$
Also, as the inverse is convex on the set of positive-definite matrices,
$$tag{2}
(tA'+(1-t)B')^{-1}leq t(A')^{-1}+(1-t)(B')^{-1}.
$$
Thus, using $(2)$ and $(0)$,
begin{align}tag{3}
|(tA'+(1-t)B')^{-1}|&leq|t(A')^{-1}+(1-t)(B')^{-1}|\
&leq t|(A')^{-1}|+(1-t)|(B')^{-1}|\ &leq|(B')^{-1}|
end{align}
Now, combining $(1)$, and $(3)$,
begin{align}tag{4}
|tA'+(1-t)B'|,|(tA'+(1-t)B')^{-1}|&leq |(tA'+(1-t)B')^{-1}|leq|(B')^{-1}|.
end{align}
If we now use the definitions of $A'$ and $B'$, we get
$$
tA'+(1-t)B'=frac1{|A|+|B|},left(A+Bright), (B')^{-1}=|B|,B^{-1}.
$$
We may thus rewrite $(4)$ as
$$
|A+B|,|(A+B)^{-1}|leq |B|,|B^{-1}|,
$$
as desired.
edited Apr 13 '17 at 12:21
Community♦
1
1
answered Feb 26 '17 at 3:21
Martin Argerami
124k1176174
124k1176174
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f374500%2fmonotone-matrix-norms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown