Can this integration be done by using substitution [on hold]
Following function is given in calculus and should be solved by using substitution
$$int frac{sqrt{4x^2-1}}{x^4} dx$$
I tried to substitute each component but still did not get answer
calculus linear-algebra integration
put on hold as off-topic by RRL, Davide Giraudo, Leucippus, Shailesh, ncmathsadist yesterday
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – RRL, Davide Giraudo, Leucippus, Shailesh, ncmathsadist
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
Following function is given in calculus and should be solved by using substitution
$$int frac{sqrt{4x^2-1}}{x^4} dx$$
I tried to substitute each component but still did not get answer
calculus linear-algebra integration
put on hold as off-topic by RRL, Davide Giraudo, Leucippus, Shailesh, ncmathsadist yesterday
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – RRL, Davide Giraudo, Leucippus, Shailesh, ncmathsadist
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
Following function is given in calculus and should be solved by using substitution
$$int frac{sqrt{4x^2-1}}{x^4} dx$$
I tried to substitute each component but still did not get answer
calculus linear-algebra integration
Following function is given in calculus and should be solved by using substitution
$$int frac{sqrt{4x^2-1}}{x^4} dx$$
I tried to substitute each component but still did not get answer
calculus linear-algebra integration
calculus linear-algebra integration
edited 2 days ago
Dylan
12.2k31026
12.2k31026
asked Dec 23 at 20:42
Arif Rustamov
327
327
put on hold as off-topic by RRL, Davide Giraudo, Leucippus, Shailesh, ncmathsadist yesterday
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – RRL, Davide Giraudo, Leucippus, Shailesh, ncmathsadist
If this question can be reworded to fit the rules in the help center, please edit the question.
put on hold as off-topic by RRL, Davide Giraudo, Leucippus, Shailesh, ncmathsadist yesterday
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – RRL, Davide Giraudo, Leucippus, Shailesh, ncmathsadist
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
hint
Put
$$2x=cosh(t) text{ in } [frac 12,+infty)$$
or
$$2x=-cosh(t) text{ in } (-infty,-frac 12]$$
to get
$$sqrt{4x^2-1}=sqrt{cosh^2(t)-1}=sinh(t)$$
add a comment |
Hint. $displaystyleintfrac{sqrt{4x^2-1}}{x^4}dx=begin{cases}displaystyleintfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x>0\displaystyle-intfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x<0end{cases}$
Keep $4-frac1{x^2}=timplies dt=2dx/x^3$.
add a comment |
This one is actually pretty neat
$$I=intfrac{sqrt{4x^2-1}}{x^4}mathrm dx$$
The first thing to do is get rid of the square root, so we do
$$x=frac12sec uRightarrow mathrm dx=frac12sec utan u,mathrm du$$
Hence
$$I=frac12intfrac{sqrt{4cdotfrac14sec^2u-1}}{frac1{2^4}sec^4u}sec utan u,mathrm du$$
Which simplifies to
$$I=8intfrac{sqrt{sec^2u-1}}{sec^3u}tan u,mathrm du$$
Noting that $sec^2u-1=tan^2u$, we can simplify more:
$$I=8intfrac{tan^2u}{sec^3u}mathrm du$$
Using the reciprocal and quotient identities this simplifies to
$$I=8intsin^2ucos u,mathrm du$$
Then we preform another substitution
$$w=sin uRightarrow mathrm dw=cos u, mathrm du$$
So we have
$$I=8int w^2mathrm dw$$
$$I=frac83w^3$$
$$I=frac83sin^3u$$
$$I=frac83(1-cos^2u)^{3/2}$$
$$I=frac83bigg(1-frac1{sec^2u}bigg)^{3/2}$$
since $x=frac12sec u$,
$$I=frac83bigg(1-frac1{4x^2}bigg)^{3/2}$$
$$I=frac{(4x^2-1)^{3/2}}{3x^3}+C$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
hint
Put
$$2x=cosh(t) text{ in } [frac 12,+infty)$$
or
$$2x=-cosh(t) text{ in } (-infty,-frac 12]$$
to get
$$sqrt{4x^2-1}=sqrt{cosh^2(t)-1}=sinh(t)$$
add a comment |
hint
Put
$$2x=cosh(t) text{ in } [frac 12,+infty)$$
or
$$2x=-cosh(t) text{ in } (-infty,-frac 12]$$
to get
$$sqrt{4x^2-1}=sqrt{cosh^2(t)-1}=sinh(t)$$
add a comment |
hint
Put
$$2x=cosh(t) text{ in } [frac 12,+infty)$$
or
$$2x=-cosh(t) text{ in } (-infty,-frac 12]$$
to get
$$sqrt{4x^2-1}=sqrt{cosh^2(t)-1}=sinh(t)$$
hint
Put
$$2x=cosh(t) text{ in } [frac 12,+infty)$$
or
$$2x=-cosh(t) text{ in } (-infty,-frac 12]$$
to get
$$sqrt{4x^2-1}=sqrt{cosh^2(t)-1}=sinh(t)$$
edited Dec 23 at 20:51
answered Dec 23 at 20:46
hamam_Abdallah
37.9k21634
37.9k21634
add a comment |
add a comment |
Hint. $displaystyleintfrac{sqrt{4x^2-1}}{x^4}dx=begin{cases}displaystyleintfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x>0\displaystyle-intfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x<0end{cases}$
Keep $4-frac1{x^2}=timplies dt=2dx/x^3$.
add a comment |
Hint. $displaystyleintfrac{sqrt{4x^2-1}}{x^4}dx=begin{cases}displaystyleintfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x>0\displaystyle-intfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x<0end{cases}$
Keep $4-frac1{x^2}=timplies dt=2dx/x^3$.
add a comment |
Hint. $displaystyleintfrac{sqrt{4x^2-1}}{x^4}dx=begin{cases}displaystyleintfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x>0\displaystyle-intfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x<0end{cases}$
Keep $4-frac1{x^2}=timplies dt=2dx/x^3$.
Hint. $displaystyleintfrac{sqrt{4x^2-1}}{x^4}dx=begin{cases}displaystyleintfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x>0\displaystyle-intfrac{dx}{x^3}sqrt{4-frac1{x^2}},&x<0end{cases}$
Keep $4-frac1{x^2}=timplies dt=2dx/x^3$.
edited Dec 23 at 21:10
answered Dec 23 at 20:47
Shubham Johri
3,826716
3,826716
add a comment |
add a comment |
This one is actually pretty neat
$$I=intfrac{sqrt{4x^2-1}}{x^4}mathrm dx$$
The first thing to do is get rid of the square root, so we do
$$x=frac12sec uRightarrow mathrm dx=frac12sec utan u,mathrm du$$
Hence
$$I=frac12intfrac{sqrt{4cdotfrac14sec^2u-1}}{frac1{2^4}sec^4u}sec utan u,mathrm du$$
Which simplifies to
$$I=8intfrac{sqrt{sec^2u-1}}{sec^3u}tan u,mathrm du$$
Noting that $sec^2u-1=tan^2u$, we can simplify more:
$$I=8intfrac{tan^2u}{sec^3u}mathrm du$$
Using the reciprocal and quotient identities this simplifies to
$$I=8intsin^2ucos u,mathrm du$$
Then we preform another substitution
$$w=sin uRightarrow mathrm dw=cos u, mathrm du$$
So we have
$$I=8int w^2mathrm dw$$
$$I=frac83w^3$$
$$I=frac83sin^3u$$
$$I=frac83(1-cos^2u)^{3/2}$$
$$I=frac83bigg(1-frac1{sec^2u}bigg)^{3/2}$$
since $x=frac12sec u$,
$$I=frac83bigg(1-frac1{4x^2}bigg)^{3/2}$$
$$I=frac{(4x^2-1)^{3/2}}{3x^3}+C$$
add a comment |
This one is actually pretty neat
$$I=intfrac{sqrt{4x^2-1}}{x^4}mathrm dx$$
The first thing to do is get rid of the square root, so we do
$$x=frac12sec uRightarrow mathrm dx=frac12sec utan u,mathrm du$$
Hence
$$I=frac12intfrac{sqrt{4cdotfrac14sec^2u-1}}{frac1{2^4}sec^4u}sec utan u,mathrm du$$
Which simplifies to
$$I=8intfrac{sqrt{sec^2u-1}}{sec^3u}tan u,mathrm du$$
Noting that $sec^2u-1=tan^2u$, we can simplify more:
$$I=8intfrac{tan^2u}{sec^3u}mathrm du$$
Using the reciprocal and quotient identities this simplifies to
$$I=8intsin^2ucos u,mathrm du$$
Then we preform another substitution
$$w=sin uRightarrow mathrm dw=cos u, mathrm du$$
So we have
$$I=8int w^2mathrm dw$$
$$I=frac83w^3$$
$$I=frac83sin^3u$$
$$I=frac83(1-cos^2u)^{3/2}$$
$$I=frac83bigg(1-frac1{sec^2u}bigg)^{3/2}$$
since $x=frac12sec u$,
$$I=frac83bigg(1-frac1{4x^2}bigg)^{3/2}$$
$$I=frac{(4x^2-1)^{3/2}}{3x^3}+C$$
add a comment |
This one is actually pretty neat
$$I=intfrac{sqrt{4x^2-1}}{x^4}mathrm dx$$
The first thing to do is get rid of the square root, so we do
$$x=frac12sec uRightarrow mathrm dx=frac12sec utan u,mathrm du$$
Hence
$$I=frac12intfrac{sqrt{4cdotfrac14sec^2u-1}}{frac1{2^4}sec^4u}sec utan u,mathrm du$$
Which simplifies to
$$I=8intfrac{sqrt{sec^2u-1}}{sec^3u}tan u,mathrm du$$
Noting that $sec^2u-1=tan^2u$, we can simplify more:
$$I=8intfrac{tan^2u}{sec^3u}mathrm du$$
Using the reciprocal and quotient identities this simplifies to
$$I=8intsin^2ucos u,mathrm du$$
Then we preform another substitution
$$w=sin uRightarrow mathrm dw=cos u, mathrm du$$
So we have
$$I=8int w^2mathrm dw$$
$$I=frac83w^3$$
$$I=frac83sin^3u$$
$$I=frac83(1-cos^2u)^{3/2}$$
$$I=frac83bigg(1-frac1{sec^2u}bigg)^{3/2}$$
since $x=frac12sec u$,
$$I=frac83bigg(1-frac1{4x^2}bigg)^{3/2}$$
$$I=frac{(4x^2-1)^{3/2}}{3x^3}+C$$
This one is actually pretty neat
$$I=intfrac{sqrt{4x^2-1}}{x^4}mathrm dx$$
The first thing to do is get rid of the square root, so we do
$$x=frac12sec uRightarrow mathrm dx=frac12sec utan u,mathrm du$$
Hence
$$I=frac12intfrac{sqrt{4cdotfrac14sec^2u-1}}{frac1{2^4}sec^4u}sec utan u,mathrm du$$
Which simplifies to
$$I=8intfrac{sqrt{sec^2u-1}}{sec^3u}tan u,mathrm du$$
Noting that $sec^2u-1=tan^2u$, we can simplify more:
$$I=8intfrac{tan^2u}{sec^3u}mathrm du$$
Using the reciprocal and quotient identities this simplifies to
$$I=8intsin^2ucos u,mathrm du$$
Then we preform another substitution
$$w=sin uRightarrow mathrm dw=cos u, mathrm du$$
So we have
$$I=8int w^2mathrm dw$$
$$I=frac83w^3$$
$$I=frac83sin^3u$$
$$I=frac83(1-cos^2u)^{3/2}$$
$$I=frac83bigg(1-frac1{sec^2u}bigg)^{3/2}$$
since $x=frac12sec u$,
$$I=frac83bigg(1-frac1{4x^2}bigg)^{3/2}$$
$$I=frac{(4x^2-1)^{3/2}}{3x^3}+C$$
answered 2 days ago
clathratus
3,017330
3,017330
add a comment |
add a comment |