Differential equations and optics












0














There is a problem in Mathematical Methods by Mary L. Boas book (Prob.8.4.20) that I couldn't understand what it asking me to do.




Find the shape of a mirror which has the property that rays from a point $O$ on the axis are reflected into a parallel beam.



Hint: Take the point $O$ at the origin. Show from the figure that $tan 2theta = y/x$. Use the formula for $tan 2theta$ to express this in terms of $tan theta = dx/dy$ and solve the resulting differential equation.



(Hint: See Problem 16.)




I think it is asking me to use $tan 2theta = y/x$ to solve the differential equation $tan theta=dy/dx$. Is this correct?



If not, is there any idea that may help me to understand how to write a differential equation that will represents the case?










share|cite|improve this question









New contributor




Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

























    0














    There is a problem in Mathematical Methods by Mary L. Boas book (Prob.8.4.20) that I couldn't understand what it asking me to do.




    Find the shape of a mirror which has the property that rays from a point $O$ on the axis are reflected into a parallel beam.



    Hint: Take the point $O$ at the origin. Show from the figure that $tan 2theta = y/x$. Use the formula for $tan 2theta$ to express this in terms of $tan theta = dx/dy$ and solve the resulting differential equation.



    (Hint: See Problem 16.)




    I think it is asking me to use $tan 2theta = y/x$ to solve the differential equation $tan theta=dy/dx$. Is this correct?



    If not, is there any idea that may help me to understand how to write a differential equation that will represents the case?










    share|cite|improve this question









    New contributor




    Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.























      0












      0








      0







      There is a problem in Mathematical Methods by Mary L. Boas book (Prob.8.4.20) that I couldn't understand what it asking me to do.




      Find the shape of a mirror which has the property that rays from a point $O$ on the axis are reflected into a parallel beam.



      Hint: Take the point $O$ at the origin. Show from the figure that $tan 2theta = y/x$. Use the formula for $tan 2theta$ to express this in terms of $tan theta = dx/dy$ and solve the resulting differential equation.



      (Hint: See Problem 16.)




      I think it is asking me to use $tan 2theta = y/x$ to solve the differential equation $tan theta=dy/dx$. Is this correct?



      If not, is there any idea that may help me to understand how to write a differential equation that will represents the case?










      share|cite|improve this question









      New contributor




      Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      There is a problem in Mathematical Methods by Mary L. Boas book (Prob.8.4.20) that I couldn't understand what it asking me to do.




      Find the shape of a mirror which has the property that rays from a point $O$ on the axis are reflected into a parallel beam.



      Hint: Take the point $O$ at the origin. Show from the figure that $tan 2theta = y/x$. Use the formula for $tan 2theta$ to express this in terms of $tan theta = dx/dy$ and solve the resulting differential equation.



      (Hint: See Problem 16.)




      I think it is asking me to use $tan 2theta = y/x$ to solve the differential equation $tan theta=dy/dx$. Is this correct?



      If not, is there any idea that may help me to understand how to write a differential equation that will represents the case?







      differential-equations






      share|cite|improve this question









      New contributor




      Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      The Pointer

      2,60021334




      2,60021334






      New contributor




      Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked yesterday









      Nour

      6




      6




      New contributor




      Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Nour is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          1














          A picture of ray trace while under reflection is helpful.



          ReflnOptics



          $$ tan 2theta = frac{PX}{XO}=frac{y}{x}$$



          $$ phi= pi/2-theta,quad tan phi= cot theta = frac{1}{tan theta}= frac{dy}{dx}$$



          In order to set up DE of reflector now find



          $$ frac{dy}{dx}=tan phi = cot theta =f(tan 2 theta)= f(x,y) $$ using double angle formula.






          share|cite|improve this answer





























            1














            The relation $tan2θ=y/x$ defines what $θ$ is. This can be used in the differential equation $tanθ=dy/dx$ to eliminate $θ$.



            You can use the double angle relation
            $$
            tan2θ=frac{2tanθ}{1-tan^2θ}.
            $$

            Problem 16 is about an DE (perhaps even this one) that is of the Clairaut type $u=xu'+f(u')$ after substitution.






            share|cite|improve this answer























            • I think the differential equation would be for $y(x)$, because $tan theta = dy/dx neq dxdy$.
              – Nour
              9 hours ago










            • Yes, I was misled by the typo in the quoted problem where it is $dx/dy$. It is correct in the original.
              – LutzL
              3 hours ago











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            Nour is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050388%2fdifferential-equations-and-optics%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            A picture of ray trace while under reflection is helpful.



            ReflnOptics



            $$ tan 2theta = frac{PX}{XO}=frac{y}{x}$$



            $$ phi= pi/2-theta,quad tan phi= cot theta = frac{1}{tan theta}= frac{dy}{dx}$$



            In order to set up DE of reflector now find



            $$ frac{dy}{dx}=tan phi = cot theta =f(tan 2 theta)= f(x,y) $$ using double angle formula.






            share|cite|improve this answer


























              1














              A picture of ray trace while under reflection is helpful.



              ReflnOptics



              $$ tan 2theta = frac{PX}{XO}=frac{y}{x}$$



              $$ phi= pi/2-theta,quad tan phi= cot theta = frac{1}{tan theta}= frac{dy}{dx}$$



              In order to set up DE of reflector now find



              $$ frac{dy}{dx}=tan phi = cot theta =f(tan 2 theta)= f(x,y) $$ using double angle formula.






              share|cite|improve this answer
























                1












                1








                1






                A picture of ray trace while under reflection is helpful.



                ReflnOptics



                $$ tan 2theta = frac{PX}{XO}=frac{y}{x}$$



                $$ phi= pi/2-theta,quad tan phi= cot theta = frac{1}{tan theta}= frac{dy}{dx}$$



                In order to set up DE of reflector now find



                $$ frac{dy}{dx}=tan phi = cot theta =f(tan 2 theta)= f(x,y) $$ using double angle formula.






                share|cite|improve this answer












                A picture of ray trace while under reflection is helpful.



                ReflnOptics



                $$ tan 2theta = frac{PX}{XO}=frac{y}{x}$$



                $$ phi= pi/2-theta,quad tan phi= cot theta = frac{1}{tan theta}= frac{dy}{dx}$$



                In order to set up DE of reflector now find



                $$ frac{dy}{dx}=tan phi = cot theta =f(tan 2 theta)= f(x,y) $$ using double angle formula.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                Narasimham

                20.6k52158




                20.6k52158























                    1














                    The relation $tan2θ=y/x$ defines what $θ$ is. This can be used in the differential equation $tanθ=dy/dx$ to eliminate $θ$.



                    You can use the double angle relation
                    $$
                    tan2θ=frac{2tanθ}{1-tan^2θ}.
                    $$

                    Problem 16 is about an DE (perhaps even this one) that is of the Clairaut type $u=xu'+f(u')$ after substitution.






                    share|cite|improve this answer























                    • I think the differential equation would be for $y(x)$, because $tan theta = dy/dx neq dxdy$.
                      – Nour
                      9 hours ago










                    • Yes, I was misled by the typo in the quoted problem where it is $dx/dy$. It is correct in the original.
                      – LutzL
                      3 hours ago
















                    1














                    The relation $tan2θ=y/x$ defines what $θ$ is. This can be used in the differential equation $tanθ=dy/dx$ to eliminate $θ$.



                    You can use the double angle relation
                    $$
                    tan2θ=frac{2tanθ}{1-tan^2θ}.
                    $$

                    Problem 16 is about an DE (perhaps even this one) that is of the Clairaut type $u=xu'+f(u')$ after substitution.






                    share|cite|improve this answer























                    • I think the differential equation would be for $y(x)$, because $tan theta = dy/dx neq dxdy$.
                      – Nour
                      9 hours ago










                    • Yes, I was misled by the typo in the quoted problem where it is $dx/dy$. It is correct in the original.
                      – LutzL
                      3 hours ago














                    1












                    1








                    1






                    The relation $tan2θ=y/x$ defines what $θ$ is. This can be used in the differential equation $tanθ=dy/dx$ to eliminate $θ$.



                    You can use the double angle relation
                    $$
                    tan2θ=frac{2tanθ}{1-tan^2θ}.
                    $$

                    Problem 16 is about an DE (perhaps even this one) that is of the Clairaut type $u=xu'+f(u')$ after substitution.






                    share|cite|improve this answer














                    The relation $tan2θ=y/x$ defines what $θ$ is. This can be used in the differential equation $tanθ=dy/dx$ to eliminate $θ$.



                    You can use the double angle relation
                    $$
                    tan2θ=frac{2tanθ}{1-tan^2θ}.
                    $$

                    Problem 16 is about an DE (perhaps even this one) that is of the Clairaut type $u=xu'+f(u')$ after substitution.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 3 hours ago

























                    answered yesterday









                    LutzL

                    55.8k42054




                    55.8k42054












                    • I think the differential equation would be for $y(x)$, because $tan theta = dy/dx neq dxdy$.
                      – Nour
                      9 hours ago










                    • Yes, I was misled by the typo in the quoted problem where it is $dx/dy$. It is correct in the original.
                      – LutzL
                      3 hours ago


















                    • I think the differential equation would be for $y(x)$, because $tan theta = dy/dx neq dxdy$.
                      – Nour
                      9 hours ago










                    • Yes, I was misled by the typo in the quoted problem where it is $dx/dy$. It is correct in the original.
                      – LutzL
                      3 hours ago
















                    I think the differential equation would be for $y(x)$, because $tan theta = dy/dx neq dxdy$.
                    – Nour
                    9 hours ago




                    I think the differential equation would be for $y(x)$, because $tan theta = dy/dx neq dxdy$.
                    – Nour
                    9 hours ago












                    Yes, I was misled by the typo in the quoted problem where it is $dx/dy$. It is correct in the original.
                    – LutzL
                    3 hours ago




                    Yes, I was misled by the typo in the quoted problem where it is $dx/dy$. It is correct in the original.
                    – LutzL
                    3 hours ago










                    Nour is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    Nour is a new contributor. Be nice, and check out our Code of Conduct.













                    Nour is a new contributor. Be nice, and check out our Code of Conduct.












                    Nour is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050388%2fdifferential-equations-and-optics%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Human spaceflight

                    Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                    張江高科駅