Under given conditions whether $limlimits_{nto infty}...
$begingroup$
Let ${f_n}_{n=1}^{infty}$ be a sequence of continuous real-valued functions defined on $mathbb R$ which converges pointwise to a continuous real-valued function $f$. Which of the following statements are true?
(i) If $0leq f_n leq f$ for all $nin mathbb N$ then $displaystyle lim_{nto infty} int_{-infty}^{infty}f_n(t)dt=int_{-infty}^{infty}f(t)dt.$
(ii) If $|f_n(t)|leq |sin t|$ for all $tin mathbb R$ and for all $nin mathbb N,$ then $displaystyle lim_{nto infty} int_{-infty}^{infty}f_n(t)dt=int_{-infty}^{infty}f(t)dt.$
(i) If $int_{-infty}^{infty} f<infty$, then we can use DOMINATED CONVERGENCE theorem and can say that the statement is true. But if $int_{-infty}^{infty}f=infty$ then what can we say about the statement?
(ii) I was not able to do this one.
Note: At the answer-key it's given that (i) is true but (ii) is false.
integration sequence-of-function
$endgroup$
add a comment |
$begingroup$
Let ${f_n}_{n=1}^{infty}$ be a sequence of continuous real-valued functions defined on $mathbb R$ which converges pointwise to a continuous real-valued function $f$. Which of the following statements are true?
(i) If $0leq f_n leq f$ for all $nin mathbb N$ then $displaystyle lim_{nto infty} int_{-infty}^{infty}f_n(t)dt=int_{-infty}^{infty}f(t)dt.$
(ii) If $|f_n(t)|leq |sin t|$ for all $tin mathbb R$ and for all $nin mathbb N,$ then $displaystyle lim_{nto infty} int_{-infty}^{infty}f_n(t)dt=int_{-infty}^{infty}f(t)dt.$
(i) If $int_{-infty}^{infty} f<infty$, then we can use DOMINATED CONVERGENCE theorem and can say that the statement is true. But if $int_{-infty}^{infty}f=infty$ then what can we say about the statement?
(ii) I was not able to do this one.
Note: At the answer-key it's given that (i) is true but (ii) is false.
integration sequence-of-function
$endgroup$
add a comment |
$begingroup$
Let ${f_n}_{n=1}^{infty}$ be a sequence of continuous real-valued functions defined on $mathbb R$ which converges pointwise to a continuous real-valued function $f$. Which of the following statements are true?
(i) If $0leq f_n leq f$ for all $nin mathbb N$ then $displaystyle lim_{nto infty} int_{-infty}^{infty}f_n(t)dt=int_{-infty}^{infty}f(t)dt.$
(ii) If $|f_n(t)|leq |sin t|$ for all $tin mathbb R$ and for all $nin mathbb N,$ then $displaystyle lim_{nto infty} int_{-infty}^{infty}f_n(t)dt=int_{-infty}^{infty}f(t)dt.$
(i) If $int_{-infty}^{infty} f<infty$, then we can use DOMINATED CONVERGENCE theorem and can say that the statement is true. But if $int_{-infty}^{infty}f=infty$ then what can we say about the statement?
(ii) I was not able to do this one.
Note: At the answer-key it's given that (i) is true but (ii) is false.
integration sequence-of-function
$endgroup$
Let ${f_n}_{n=1}^{infty}$ be a sequence of continuous real-valued functions defined on $mathbb R$ which converges pointwise to a continuous real-valued function $f$. Which of the following statements are true?
(i) If $0leq f_n leq f$ for all $nin mathbb N$ then $displaystyle lim_{nto infty} int_{-infty}^{infty}f_n(t)dt=int_{-infty}^{infty}f(t)dt.$
(ii) If $|f_n(t)|leq |sin t|$ for all $tin mathbb R$ and for all $nin mathbb N,$ then $displaystyle lim_{nto infty} int_{-infty}^{infty}f_n(t)dt=int_{-infty}^{infty}f(t)dt.$
(i) If $int_{-infty}^{infty} f<infty$, then we can use DOMINATED CONVERGENCE theorem and can say that the statement is true. But if $int_{-infty}^{infty}f=infty$ then what can we say about the statement?
(ii) I was not able to do this one.
Note: At the answer-key it's given that (i) is true but (ii) is false.
integration sequence-of-function
integration sequence-of-function
edited Jan 10 at 16:19
Did
248k23224463
248k23224463
asked Jan 10 at 16:10
nurun neshanurun nesha
1,0362623
1,0362623
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
(1) Suppose $0 le f_n le f$ and $int_{-infty}^infty f(t); dt = infty$. Given $N > 0$, there is $M$ such that $int_{-M}^M f(t); dt > N$. By dominated convergence $int_{-M}^M f_n(t); dt to int_{-M}^M f(t); dt$, so $int_{-infty}^infty f_n(t); dt ge int_{-M}^M f_n(t); dt > N$ for sufficiently large $n$.
(2) Try $f_n(t) = sin(t)$ for $n pi < t < (n+1)pi$, $0$ otherwise.
$endgroup$
3
$begingroup$
$f$ is stated to be a continuous real-valued function.
$endgroup$
– Robert Israel
Jan 10 at 16:25
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068827%2funder-given-conditions-whether-lim-limits-n-to-infty-int-infty-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
(1) Suppose $0 le f_n le f$ and $int_{-infty}^infty f(t); dt = infty$. Given $N > 0$, there is $M$ such that $int_{-M}^M f(t); dt > N$. By dominated convergence $int_{-M}^M f_n(t); dt to int_{-M}^M f(t); dt$, so $int_{-infty}^infty f_n(t); dt ge int_{-M}^M f_n(t); dt > N$ for sufficiently large $n$.
(2) Try $f_n(t) = sin(t)$ for $n pi < t < (n+1)pi$, $0$ otherwise.
$endgroup$
3
$begingroup$
$f$ is stated to be a continuous real-valued function.
$endgroup$
– Robert Israel
Jan 10 at 16:25
add a comment |
$begingroup$
(1) Suppose $0 le f_n le f$ and $int_{-infty}^infty f(t); dt = infty$. Given $N > 0$, there is $M$ such that $int_{-M}^M f(t); dt > N$. By dominated convergence $int_{-M}^M f_n(t); dt to int_{-M}^M f(t); dt$, so $int_{-infty}^infty f_n(t); dt ge int_{-M}^M f_n(t); dt > N$ for sufficiently large $n$.
(2) Try $f_n(t) = sin(t)$ for $n pi < t < (n+1)pi$, $0$ otherwise.
$endgroup$
3
$begingroup$
$f$ is stated to be a continuous real-valued function.
$endgroup$
– Robert Israel
Jan 10 at 16:25
add a comment |
$begingroup$
(1) Suppose $0 le f_n le f$ and $int_{-infty}^infty f(t); dt = infty$. Given $N > 0$, there is $M$ such that $int_{-M}^M f(t); dt > N$. By dominated convergence $int_{-M}^M f_n(t); dt to int_{-M}^M f(t); dt$, so $int_{-infty}^infty f_n(t); dt ge int_{-M}^M f_n(t); dt > N$ for sufficiently large $n$.
(2) Try $f_n(t) = sin(t)$ for $n pi < t < (n+1)pi$, $0$ otherwise.
$endgroup$
(1) Suppose $0 le f_n le f$ and $int_{-infty}^infty f(t); dt = infty$. Given $N > 0$, there is $M$ such that $int_{-M}^M f(t); dt > N$. By dominated convergence $int_{-M}^M f_n(t); dt to int_{-M}^M f(t); dt$, so $int_{-infty}^infty f_n(t); dt ge int_{-M}^M f_n(t); dt > N$ for sufficiently large $n$.
(2) Try $f_n(t) = sin(t)$ for $n pi < t < (n+1)pi$, $0$ otherwise.
answered Jan 10 at 16:20
Robert IsraelRobert Israel
326k23215469
326k23215469
3
$begingroup$
$f$ is stated to be a continuous real-valued function.
$endgroup$
– Robert Israel
Jan 10 at 16:25
add a comment |
3
$begingroup$
$f$ is stated to be a continuous real-valued function.
$endgroup$
– Robert Israel
Jan 10 at 16:25
3
3
$begingroup$
$f$ is stated to be a continuous real-valued function.
$endgroup$
– Robert Israel
Jan 10 at 16:25
$begingroup$
$f$ is stated to be a continuous real-valued function.
$endgroup$
– Robert Israel
Jan 10 at 16:25
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068827%2funder-given-conditions-whether-lim-limits-n-to-infty-int-infty-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown