Integral involving a Gaussian hypergeometric function and a rational function
$begingroup$
Let $x_0,x in (0,1/10)$ and define:
begin{equation}
g(x):= F_{2,1}left[frac{1}{13},frac{1}{17},frac{1}{5}; 100 x^2 right]
end{equation}
Then the following identity holds true:
begin{eqnarray}
&&intlimits_{x_0}^x frac{left(2404500 xi ^3+13746115 xi ^2-47073 xi -161109right) }{(1-10 xi )^{5513/7140} xi ^{116/35} (10 xi +1)^{5683/7140}} g(xi )dxi =\
&&
left.frac{(1-10 x)^{1627/7140} (10 x+1)^{1457/7140} }{x^{116/35}} left(-97461 (10 x-1) (10 x+1) x^2 g'(x)-1785 left(840 x^2-13 x-39right) x g(x)right) right|_{x_0}^x
end{eqnarray}
In[815]:= x =.; x0 =.; xi =.; Clear[g]; Clear[F]; Clear[f]; Clear[f1];
g[x_] := Hypergeometric2F1[1/13, 1/17, 1/5, 100 x^2];
F[x_] := ((1 - 10 x)^(1627/7140) (1 + 10 x)^(1457/7140))/x^(
116/35) (- 97461 x^2 (-1 + 10 x) (1 + 10 x) g'[x] -
1785 x (-39 - 13 x + 840 x^2) g[x]);
f[x_] := NIntegrate[ (1 - 10 xi)^(1627/7140 - 1) (1 + 10 xi)^(
1457/7140 -
1) (-161109 - 47073 xi + 13746115 xi^2 + 2404500 xi^3)/( xi^(
116/35) ) g[xi], {xi, x0, x}, WorkingPrecision -> 40];
{x, x0} = RandomReal[{0, 1/10}, 2, WorkingPrecision -> 40];
f1[x_] := F[x] - F[x0];
{f[x], f1[x]} // MatrixForm
This identity comes on one hand from applying the inverse gauge transformation (see https://www.math.fsu.edu/~eimamogl/hypergeometricsols/hypergeometricsols.mpl) to the differential operator:
begin{equation}
L:=frac{d^2}{d x^2} + frac{140500 x^2+663}{1105 x (10 x-1) (10 x+1)} frac{d}{d x}+ frac{400}{221 (10 x-1) (10 x+1)}
end{equation}
and to the gauge
begin{equation}
G:=-frac{39 left(1785 left(100 x^2-1right) x frac{d}{d x} -514500 x^2+425 x+5916right)}{x left(2404500 x^3+13746115 x^2-47073 x-161109right)}
end{equation}
On the other hand the identity in question comes from solving the in-homogeneous first order ODE
begin{equation}
G left[f(x) right] = g(x)
end{equation}
by the standard way of variation of constants.
Note 1: The function $g(x)$ satisfies the equation:
begin{equation}
Lleft[ g(x) right] =0
end{equation}
In[855]:= x =.; FullSimplify[(D[#, {x, 2}] + (663 + 140500 x^2)/(
1105 x (-1 + 10 x) (1 + 10 x)) D[#, x] +
400/(221 (-1 + 10 x) (1 + 10 x)) #) & /@ {Hypergeometric2F1[1/13,
1/17, 1/5, 100 x^2]}]
Out[855]= {0}
Note 2: The gauge $G$ corresponds to the first element of the global integral basis of the operator $L$, a basis which has been normalized at infinity (see https://arxiv.org/pdf/1606.01576.pdf for details).
Update: Here is actually another example of a similar integral identity:
Now define:
begin{equation}
g(x):= F_{2,1}left[frac{1}{11},frac{1}{3},frac{1}{2}; 100 x^2 right]
end{equation}
Then the following holds:
begin{eqnarray}
&&!!!!!!!!intlimits_{x_0}^x frac{sqrt[3]{1-10 xi } (10 xi +1)^{2/15} left(42500 xi ^3+170850 xi ^2-4620 xi -4389right)}{1155 xi ^{24/5}} g(xi) d xi = \
&&!!!!!!!!frac{(1-10 x)^{4/3} (10 x+1)^{17/15}}{x^{24/5}}left.left( -frac{5}{14} (10 x-1) (10 x+1) x^2 g'(x)-frac{1}{77} left(500 x^2-55 x-77right) x g(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := Hypergeometric2F1[1/11, 1/3, 1/2, 100 x^2];
F[x_] := ((1 - 10 x)^(4/3) (1 + 10 x)^(17/15))/x^(
24/5) (-(5/14) x^2 (-1 + 10 x) (1 + 10 x) g'[x] -
1/77 x (-77 - 55 x + 500 x^2) g[x]);
f[x_] := (NIntegrate[( (1 - 10 xi)^(1/3) (1 + 10 xi)^(
2/15) (-4389 - 4620 xi + 170850 xi^2 + 42500 xi^3))/(
1155 xi^(24/5)) g[xi], {xi, x0, x}, WorkingPrecision -> 40]);
{x, x0} = RandomReal[{0, 1/10}, 2, WorkingPrecision -> 40];
{f[x], F[x] - F[x0]} // MatrixForm
The identity above has been derived in exactly the same way as the one before except that now we started from an abscissa transformed $x rightarrow 100 x^2$ Gaussian hypergeometric operator with parameters $(a,b,c)=(1/11,1/3,1/2)$ and then used the first element of the infinity-normalized global integral basis to construct the relevant inverse gauge transformation.
Update 1:
Here are two other examples which I generated this morning.
Firstly we define:
begin{equation}
g(x):=F_{2,1}left[-frac{1}{4},-frac{1}{6},frac{1}{2};9 x^2right]
end{equation}
Then the following holds true:
begin{eqnarray}
&&intlimits_{x_0}^x frac{sqrt[12]{1-9 xi ^2} e^{-4 sqrt{frac{2}{97}} tan ^{-1}left(sqrt{frac{2}{97}} (5 xi +8)right)}}{left(10 xi ^2+32 xi +45right)^{3/4}}
frac{45 left(2400 xi ^3+10547 xi ^2+8640 xi +5625right)}{left(90 xi ^4+288 xi ^3+395 xi ^2-32 xi -45right)}
g(xi) dxi=\
&&left.frac{sqrt[12]{1-9 x^2} e^{-4 sqrt{frac{2}{97}} tan ^{-1}left(sqrt{frac{2}{97}} (5 x+8)right)}}{x left(10 x^2+32 x+45right)^{3/4}}
left(450 x^2 g(x)-90 x left(10 x^2+32 x+45right) g'(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := Hypergeometric2F1[-1/4, -1/6, 1/2, 9 x^2];
F[x_] := (1 - 9 x^2)^(1/12)/(
E^(4 Sqrt[2/97] ArcTan[Sqrt[2/97] (8 + 5 x)])
x (45 + 32 x + 10 x^2)^(
3/4)) (-90 x (45 + 32 x + 10 x^2) g'[x] + 450 x^2 g[x]);
{x0, x} = RandomReal[{0, 1/3}, 2, WorkingPrecision -> 40];
X1 = NIntegrate[ ((1 - 9 xi^2)^(1/12))/(
E^(4 Sqrt[2/97]
ArcTan[Sqrt[2/97] (8 + 5 xi)]) (45 + 32 xi + 10 xi^2)^(
3/4)) (45 (5625 + 8640 xi + 10547 xi^2 + 2400 xi^3))/(-45 -
32 xi + 395 xi^2 + 288 xi^3 + 90 xi^4) g[xi], {xi, x0, x},
WorkingPrecision -> 40]
X2 = F[x] - F[x0]
Secondly we define:
begin{equation}
g(x):=x^{1/3} F_{2,1}left[-frac{2}{15},-frac{1}{12},frac{2}{3};49 x^2right]
end{equation}
Then the following holds true:
begin{eqnarray}
&&intlimits_{x_0}^x left(-49 xi +2 sqrt{246}+2right)^{frac{sqrt{246}-1599}{1845}} left(49 xi +2 sqrt{246}-2right)^{-frac{13}{15}-frac{sqrt{frac{2}{123}}}{15}} cdot\
&&
left(1-49 xi ^2right)^{7/60}
frac{20 left(-1323 xi ^3-13798 xi ^2+210 xi +700right)}{2401 xi ^4-196 xi ^3-1029 xi ^2+4 xi +20} g(xi) dxi=\
&&
left.frac{left(-49 x+2 sqrt{246}+2right)^{frac{sqrt{frac{2}{123}}}{15}-frac{13}{15}} left(49 x+2 sqrt{246}-2right)^{frac{-1599-sqrt{246}}{1845}} left(1-49 x^2right)^{7/60}}{x}
left(frac{75}{98} left(441 x^2-20 x-100right) g(x)-frac{1125}{98} x left(49 x^2-4 x-20right) g'(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := x^(1/3) Hypergeometric2F1[-(2/15), -(1/12), 2/3, 49 x^2];
F[x_] := (1 - 49 x^2)^(
7/60)/((2 + 2 Sqrt[246] - 49 x)^(13/15 - Sqrt[2/123]/15)
x (-2 + 2 Sqrt[246] + 49 x)^((1599 + Sqrt[246])/
1845)) (-(1125/98) x (-20 - 4 x + 49 x^2) g'[x] +
75/98 (-100 - 20 x + 441 x^2) g[x]);
{x0, x} = RandomReal[{0, 1/7}, 2, WorkingPrecision -> 40];
NIntegrate[(1 - 49 xi^2)^(
7/60)/((2 + 2 Sqrt[246] - 49 xi)^((1599 - Sqrt[246])/
1845) (-2 + 2 Sqrt[246] + 49 xi)^(13/15 + Sqrt[2/123]/15)) (
20 (700 + 210 xi - 13798 xi^2 - 1323 xi^3))/(
20 + 4 xi - 1029 xi^2 - 196 xi^3 + 2401 xi^4) g[xi], {xi, x0, x},
WorkingPrecision -> 40]
F[x] - F[x0]
Update 2: In order to avoid confusion let me write down in a concise way how all those results were generated.
Let $L:=d^2/d x^2 + a_1(x) d/d x + a_0(x)$ and $G:=r_1(x) d/d x + r_0(x)$ be a pair of differential operators or order two and order one respectively with coefficients being rational functions in $x$.
Then let $Q(x):= int r_0(x)/r_1(x) dx$ and let $(R_0(x),R_1(x))$ be the inverse gauge of the operator $L$ and the gauge $G$. In other words the functions $(R_0(x),R_1(x))$ are such that:
begin{equation}
left( r_0(x) + r_1(x) frac{d}{d x}right)left(R_0(x) + R_1(x) frac{d}{d x}right) f(x) = L f(x) quad (i)
end{equation}
Note that the inverse gauge can always be found by making a polynomial ansatz for $R_0(x),R_1(x)$ inserting that ansatz to the equation above and then by matching the coefficients at respective derivatives solving for the unknown polynomial coefficients.
Now let the function $g(x)$ solve the ODE below:
begin{equation}
L g(x) = 0 quad (ii)
end{equation}
Then the following identity holds true:
begin{equation}
intlimits_{x_0}^x frac{exp(Q(xi)}{r_1(xi)} g(xi) dxi =
exp(Q(x)) left.left[ R_0(x) g(x) + R_1(x) g^{'}(x) right] right|_{x_0}^x
end{equation}
Note that the proof of this statement follows in a straightforward way from differentiating the right hand side and then using the properties $(i)$ and $(ii)$. As such this identity is not astounding . However the tricky parts is to find the inverse gauge and also to solve the ODE $(ii)$.
Having said all this my final question is now how do you prove such identities as above in a different way?
ordinary-differential-equations special-functions hypergeometric-function
$endgroup$
add a comment |
$begingroup$
Let $x_0,x in (0,1/10)$ and define:
begin{equation}
g(x):= F_{2,1}left[frac{1}{13},frac{1}{17},frac{1}{5}; 100 x^2 right]
end{equation}
Then the following identity holds true:
begin{eqnarray}
&&intlimits_{x_0}^x frac{left(2404500 xi ^3+13746115 xi ^2-47073 xi -161109right) }{(1-10 xi )^{5513/7140} xi ^{116/35} (10 xi +1)^{5683/7140}} g(xi )dxi =\
&&
left.frac{(1-10 x)^{1627/7140} (10 x+1)^{1457/7140} }{x^{116/35}} left(-97461 (10 x-1) (10 x+1) x^2 g'(x)-1785 left(840 x^2-13 x-39right) x g(x)right) right|_{x_0}^x
end{eqnarray}
In[815]:= x =.; x0 =.; xi =.; Clear[g]; Clear[F]; Clear[f]; Clear[f1];
g[x_] := Hypergeometric2F1[1/13, 1/17, 1/5, 100 x^2];
F[x_] := ((1 - 10 x)^(1627/7140) (1 + 10 x)^(1457/7140))/x^(
116/35) (- 97461 x^2 (-1 + 10 x) (1 + 10 x) g'[x] -
1785 x (-39 - 13 x + 840 x^2) g[x]);
f[x_] := NIntegrate[ (1 - 10 xi)^(1627/7140 - 1) (1 + 10 xi)^(
1457/7140 -
1) (-161109 - 47073 xi + 13746115 xi^2 + 2404500 xi^3)/( xi^(
116/35) ) g[xi], {xi, x0, x}, WorkingPrecision -> 40];
{x, x0} = RandomReal[{0, 1/10}, 2, WorkingPrecision -> 40];
f1[x_] := F[x] - F[x0];
{f[x], f1[x]} // MatrixForm
This identity comes on one hand from applying the inverse gauge transformation (see https://www.math.fsu.edu/~eimamogl/hypergeometricsols/hypergeometricsols.mpl) to the differential operator:
begin{equation}
L:=frac{d^2}{d x^2} + frac{140500 x^2+663}{1105 x (10 x-1) (10 x+1)} frac{d}{d x}+ frac{400}{221 (10 x-1) (10 x+1)}
end{equation}
and to the gauge
begin{equation}
G:=-frac{39 left(1785 left(100 x^2-1right) x frac{d}{d x} -514500 x^2+425 x+5916right)}{x left(2404500 x^3+13746115 x^2-47073 x-161109right)}
end{equation}
On the other hand the identity in question comes from solving the in-homogeneous first order ODE
begin{equation}
G left[f(x) right] = g(x)
end{equation}
by the standard way of variation of constants.
Note 1: The function $g(x)$ satisfies the equation:
begin{equation}
Lleft[ g(x) right] =0
end{equation}
In[855]:= x =.; FullSimplify[(D[#, {x, 2}] + (663 + 140500 x^2)/(
1105 x (-1 + 10 x) (1 + 10 x)) D[#, x] +
400/(221 (-1 + 10 x) (1 + 10 x)) #) & /@ {Hypergeometric2F1[1/13,
1/17, 1/5, 100 x^2]}]
Out[855]= {0}
Note 2: The gauge $G$ corresponds to the first element of the global integral basis of the operator $L$, a basis which has been normalized at infinity (see https://arxiv.org/pdf/1606.01576.pdf for details).
Update: Here is actually another example of a similar integral identity:
Now define:
begin{equation}
g(x):= F_{2,1}left[frac{1}{11},frac{1}{3},frac{1}{2}; 100 x^2 right]
end{equation}
Then the following holds:
begin{eqnarray}
&&!!!!!!!!intlimits_{x_0}^x frac{sqrt[3]{1-10 xi } (10 xi +1)^{2/15} left(42500 xi ^3+170850 xi ^2-4620 xi -4389right)}{1155 xi ^{24/5}} g(xi) d xi = \
&&!!!!!!!!frac{(1-10 x)^{4/3} (10 x+1)^{17/15}}{x^{24/5}}left.left( -frac{5}{14} (10 x-1) (10 x+1) x^2 g'(x)-frac{1}{77} left(500 x^2-55 x-77right) x g(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := Hypergeometric2F1[1/11, 1/3, 1/2, 100 x^2];
F[x_] := ((1 - 10 x)^(4/3) (1 + 10 x)^(17/15))/x^(
24/5) (-(5/14) x^2 (-1 + 10 x) (1 + 10 x) g'[x] -
1/77 x (-77 - 55 x + 500 x^2) g[x]);
f[x_] := (NIntegrate[( (1 - 10 xi)^(1/3) (1 + 10 xi)^(
2/15) (-4389 - 4620 xi + 170850 xi^2 + 42500 xi^3))/(
1155 xi^(24/5)) g[xi], {xi, x0, x}, WorkingPrecision -> 40]);
{x, x0} = RandomReal[{0, 1/10}, 2, WorkingPrecision -> 40];
{f[x], F[x] - F[x0]} // MatrixForm
The identity above has been derived in exactly the same way as the one before except that now we started from an abscissa transformed $x rightarrow 100 x^2$ Gaussian hypergeometric operator with parameters $(a,b,c)=(1/11,1/3,1/2)$ and then used the first element of the infinity-normalized global integral basis to construct the relevant inverse gauge transformation.
Update 1:
Here are two other examples which I generated this morning.
Firstly we define:
begin{equation}
g(x):=F_{2,1}left[-frac{1}{4},-frac{1}{6},frac{1}{2};9 x^2right]
end{equation}
Then the following holds true:
begin{eqnarray}
&&intlimits_{x_0}^x frac{sqrt[12]{1-9 xi ^2} e^{-4 sqrt{frac{2}{97}} tan ^{-1}left(sqrt{frac{2}{97}} (5 xi +8)right)}}{left(10 xi ^2+32 xi +45right)^{3/4}}
frac{45 left(2400 xi ^3+10547 xi ^2+8640 xi +5625right)}{left(90 xi ^4+288 xi ^3+395 xi ^2-32 xi -45right)}
g(xi) dxi=\
&&left.frac{sqrt[12]{1-9 x^2} e^{-4 sqrt{frac{2}{97}} tan ^{-1}left(sqrt{frac{2}{97}} (5 x+8)right)}}{x left(10 x^2+32 x+45right)^{3/4}}
left(450 x^2 g(x)-90 x left(10 x^2+32 x+45right) g'(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := Hypergeometric2F1[-1/4, -1/6, 1/2, 9 x^2];
F[x_] := (1 - 9 x^2)^(1/12)/(
E^(4 Sqrt[2/97] ArcTan[Sqrt[2/97] (8 + 5 x)])
x (45 + 32 x + 10 x^2)^(
3/4)) (-90 x (45 + 32 x + 10 x^2) g'[x] + 450 x^2 g[x]);
{x0, x} = RandomReal[{0, 1/3}, 2, WorkingPrecision -> 40];
X1 = NIntegrate[ ((1 - 9 xi^2)^(1/12))/(
E^(4 Sqrt[2/97]
ArcTan[Sqrt[2/97] (8 + 5 xi)]) (45 + 32 xi + 10 xi^2)^(
3/4)) (45 (5625 + 8640 xi + 10547 xi^2 + 2400 xi^3))/(-45 -
32 xi + 395 xi^2 + 288 xi^3 + 90 xi^4) g[xi], {xi, x0, x},
WorkingPrecision -> 40]
X2 = F[x] - F[x0]
Secondly we define:
begin{equation}
g(x):=x^{1/3} F_{2,1}left[-frac{2}{15},-frac{1}{12},frac{2}{3};49 x^2right]
end{equation}
Then the following holds true:
begin{eqnarray}
&&intlimits_{x_0}^x left(-49 xi +2 sqrt{246}+2right)^{frac{sqrt{246}-1599}{1845}} left(49 xi +2 sqrt{246}-2right)^{-frac{13}{15}-frac{sqrt{frac{2}{123}}}{15}} cdot\
&&
left(1-49 xi ^2right)^{7/60}
frac{20 left(-1323 xi ^3-13798 xi ^2+210 xi +700right)}{2401 xi ^4-196 xi ^3-1029 xi ^2+4 xi +20} g(xi) dxi=\
&&
left.frac{left(-49 x+2 sqrt{246}+2right)^{frac{sqrt{frac{2}{123}}}{15}-frac{13}{15}} left(49 x+2 sqrt{246}-2right)^{frac{-1599-sqrt{246}}{1845}} left(1-49 x^2right)^{7/60}}{x}
left(frac{75}{98} left(441 x^2-20 x-100right) g(x)-frac{1125}{98} x left(49 x^2-4 x-20right) g'(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := x^(1/3) Hypergeometric2F1[-(2/15), -(1/12), 2/3, 49 x^2];
F[x_] := (1 - 49 x^2)^(
7/60)/((2 + 2 Sqrt[246] - 49 x)^(13/15 - Sqrt[2/123]/15)
x (-2 + 2 Sqrt[246] + 49 x)^((1599 + Sqrt[246])/
1845)) (-(1125/98) x (-20 - 4 x + 49 x^2) g'[x] +
75/98 (-100 - 20 x + 441 x^2) g[x]);
{x0, x} = RandomReal[{0, 1/7}, 2, WorkingPrecision -> 40];
NIntegrate[(1 - 49 xi^2)^(
7/60)/((2 + 2 Sqrt[246] - 49 xi)^((1599 - Sqrt[246])/
1845) (-2 + 2 Sqrt[246] + 49 xi)^(13/15 + Sqrt[2/123]/15)) (
20 (700 + 210 xi - 13798 xi^2 - 1323 xi^3))/(
20 + 4 xi - 1029 xi^2 - 196 xi^3 + 2401 xi^4) g[xi], {xi, x0, x},
WorkingPrecision -> 40]
F[x] - F[x0]
Update 2: In order to avoid confusion let me write down in a concise way how all those results were generated.
Let $L:=d^2/d x^2 + a_1(x) d/d x + a_0(x)$ and $G:=r_1(x) d/d x + r_0(x)$ be a pair of differential operators or order two and order one respectively with coefficients being rational functions in $x$.
Then let $Q(x):= int r_0(x)/r_1(x) dx$ and let $(R_0(x),R_1(x))$ be the inverse gauge of the operator $L$ and the gauge $G$. In other words the functions $(R_0(x),R_1(x))$ are such that:
begin{equation}
left( r_0(x) + r_1(x) frac{d}{d x}right)left(R_0(x) + R_1(x) frac{d}{d x}right) f(x) = L f(x) quad (i)
end{equation}
Note that the inverse gauge can always be found by making a polynomial ansatz for $R_0(x),R_1(x)$ inserting that ansatz to the equation above and then by matching the coefficients at respective derivatives solving for the unknown polynomial coefficients.
Now let the function $g(x)$ solve the ODE below:
begin{equation}
L g(x) = 0 quad (ii)
end{equation}
Then the following identity holds true:
begin{equation}
intlimits_{x_0}^x frac{exp(Q(xi)}{r_1(xi)} g(xi) dxi =
exp(Q(x)) left.left[ R_0(x) g(x) + R_1(x) g^{'}(x) right] right|_{x_0}^x
end{equation}
Note that the proof of this statement follows in a straightforward way from differentiating the right hand side and then using the properties $(i)$ and $(ii)$. As such this identity is not astounding . However the tricky parts is to find the inverse gauge and also to solve the ODE $(ii)$.
Having said all this my final question is now how do you prove such identities as above in a different way?
ordinary-differential-equations special-functions hypergeometric-function
$endgroup$
$begingroup$
I would appreciate if somebody explained the reason for down-voting my question? Is there anything unclear in here? I just show an example of a highly non-trivial integral that can be done in closed form. Moreover this is not an isolated example but it is clear that one can construct a whole family of such identities by playing around with parameters.
$endgroup$
– Przemo
Jan 10 at 16:31
add a comment |
$begingroup$
Let $x_0,x in (0,1/10)$ and define:
begin{equation}
g(x):= F_{2,1}left[frac{1}{13},frac{1}{17},frac{1}{5}; 100 x^2 right]
end{equation}
Then the following identity holds true:
begin{eqnarray}
&&intlimits_{x_0}^x frac{left(2404500 xi ^3+13746115 xi ^2-47073 xi -161109right) }{(1-10 xi )^{5513/7140} xi ^{116/35} (10 xi +1)^{5683/7140}} g(xi )dxi =\
&&
left.frac{(1-10 x)^{1627/7140} (10 x+1)^{1457/7140} }{x^{116/35}} left(-97461 (10 x-1) (10 x+1) x^2 g'(x)-1785 left(840 x^2-13 x-39right) x g(x)right) right|_{x_0}^x
end{eqnarray}
In[815]:= x =.; x0 =.; xi =.; Clear[g]; Clear[F]; Clear[f]; Clear[f1];
g[x_] := Hypergeometric2F1[1/13, 1/17, 1/5, 100 x^2];
F[x_] := ((1 - 10 x)^(1627/7140) (1 + 10 x)^(1457/7140))/x^(
116/35) (- 97461 x^2 (-1 + 10 x) (1 + 10 x) g'[x] -
1785 x (-39 - 13 x + 840 x^2) g[x]);
f[x_] := NIntegrate[ (1 - 10 xi)^(1627/7140 - 1) (1 + 10 xi)^(
1457/7140 -
1) (-161109 - 47073 xi + 13746115 xi^2 + 2404500 xi^3)/( xi^(
116/35) ) g[xi], {xi, x0, x}, WorkingPrecision -> 40];
{x, x0} = RandomReal[{0, 1/10}, 2, WorkingPrecision -> 40];
f1[x_] := F[x] - F[x0];
{f[x], f1[x]} // MatrixForm
This identity comes on one hand from applying the inverse gauge transformation (see https://www.math.fsu.edu/~eimamogl/hypergeometricsols/hypergeometricsols.mpl) to the differential operator:
begin{equation}
L:=frac{d^2}{d x^2} + frac{140500 x^2+663}{1105 x (10 x-1) (10 x+1)} frac{d}{d x}+ frac{400}{221 (10 x-1) (10 x+1)}
end{equation}
and to the gauge
begin{equation}
G:=-frac{39 left(1785 left(100 x^2-1right) x frac{d}{d x} -514500 x^2+425 x+5916right)}{x left(2404500 x^3+13746115 x^2-47073 x-161109right)}
end{equation}
On the other hand the identity in question comes from solving the in-homogeneous first order ODE
begin{equation}
G left[f(x) right] = g(x)
end{equation}
by the standard way of variation of constants.
Note 1: The function $g(x)$ satisfies the equation:
begin{equation}
Lleft[ g(x) right] =0
end{equation}
In[855]:= x =.; FullSimplify[(D[#, {x, 2}] + (663 + 140500 x^2)/(
1105 x (-1 + 10 x) (1 + 10 x)) D[#, x] +
400/(221 (-1 + 10 x) (1 + 10 x)) #) & /@ {Hypergeometric2F1[1/13,
1/17, 1/5, 100 x^2]}]
Out[855]= {0}
Note 2: The gauge $G$ corresponds to the first element of the global integral basis of the operator $L$, a basis which has been normalized at infinity (see https://arxiv.org/pdf/1606.01576.pdf for details).
Update: Here is actually another example of a similar integral identity:
Now define:
begin{equation}
g(x):= F_{2,1}left[frac{1}{11},frac{1}{3},frac{1}{2}; 100 x^2 right]
end{equation}
Then the following holds:
begin{eqnarray}
&&!!!!!!!!intlimits_{x_0}^x frac{sqrt[3]{1-10 xi } (10 xi +1)^{2/15} left(42500 xi ^3+170850 xi ^2-4620 xi -4389right)}{1155 xi ^{24/5}} g(xi) d xi = \
&&!!!!!!!!frac{(1-10 x)^{4/3} (10 x+1)^{17/15}}{x^{24/5}}left.left( -frac{5}{14} (10 x-1) (10 x+1) x^2 g'(x)-frac{1}{77} left(500 x^2-55 x-77right) x g(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := Hypergeometric2F1[1/11, 1/3, 1/2, 100 x^2];
F[x_] := ((1 - 10 x)^(4/3) (1 + 10 x)^(17/15))/x^(
24/5) (-(5/14) x^2 (-1 + 10 x) (1 + 10 x) g'[x] -
1/77 x (-77 - 55 x + 500 x^2) g[x]);
f[x_] := (NIntegrate[( (1 - 10 xi)^(1/3) (1 + 10 xi)^(
2/15) (-4389 - 4620 xi + 170850 xi^2 + 42500 xi^3))/(
1155 xi^(24/5)) g[xi], {xi, x0, x}, WorkingPrecision -> 40]);
{x, x0} = RandomReal[{0, 1/10}, 2, WorkingPrecision -> 40];
{f[x], F[x] - F[x0]} // MatrixForm
The identity above has been derived in exactly the same way as the one before except that now we started from an abscissa transformed $x rightarrow 100 x^2$ Gaussian hypergeometric operator with parameters $(a,b,c)=(1/11,1/3,1/2)$ and then used the first element of the infinity-normalized global integral basis to construct the relevant inverse gauge transformation.
Update 1:
Here are two other examples which I generated this morning.
Firstly we define:
begin{equation}
g(x):=F_{2,1}left[-frac{1}{4},-frac{1}{6},frac{1}{2};9 x^2right]
end{equation}
Then the following holds true:
begin{eqnarray}
&&intlimits_{x_0}^x frac{sqrt[12]{1-9 xi ^2} e^{-4 sqrt{frac{2}{97}} tan ^{-1}left(sqrt{frac{2}{97}} (5 xi +8)right)}}{left(10 xi ^2+32 xi +45right)^{3/4}}
frac{45 left(2400 xi ^3+10547 xi ^2+8640 xi +5625right)}{left(90 xi ^4+288 xi ^3+395 xi ^2-32 xi -45right)}
g(xi) dxi=\
&&left.frac{sqrt[12]{1-9 x^2} e^{-4 sqrt{frac{2}{97}} tan ^{-1}left(sqrt{frac{2}{97}} (5 x+8)right)}}{x left(10 x^2+32 x+45right)^{3/4}}
left(450 x^2 g(x)-90 x left(10 x^2+32 x+45right) g'(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := Hypergeometric2F1[-1/4, -1/6, 1/2, 9 x^2];
F[x_] := (1 - 9 x^2)^(1/12)/(
E^(4 Sqrt[2/97] ArcTan[Sqrt[2/97] (8 + 5 x)])
x (45 + 32 x + 10 x^2)^(
3/4)) (-90 x (45 + 32 x + 10 x^2) g'[x] + 450 x^2 g[x]);
{x0, x} = RandomReal[{0, 1/3}, 2, WorkingPrecision -> 40];
X1 = NIntegrate[ ((1 - 9 xi^2)^(1/12))/(
E^(4 Sqrt[2/97]
ArcTan[Sqrt[2/97] (8 + 5 xi)]) (45 + 32 xi + 10 xi^2)^(
3/4)) (45 (5625 + 8640 xi + 10547 xi^2 + 2400 xi^3))/(-45 -
32 xi + 395 xi^2 + 288 xi^3 + 90 xi^4) g[xi], {xi, x0, x},
WorkingPrecision -> 40]
X2 = F[x] - F[x0]
Secondly we define:
begin{equation}
g(x):=x^{1/3} F_{2,1}left[-frac{2}{15},-frac{1}{12},frac{2}{3};49 x^2right]
end{equation}
Then the following holds true:
begin{eqnarray}
&&intlimits_{x_0}^x left(-49 xi +2 sqrt{246}+2right)^{frac{sqrt{246}-1599}{1845}} left(49 xi +2 sqrt{246}-2right)^{-frac{13}{15}-frac{sqrt{frac{2}{123}}}{15}} cdot\
&&
left(1-49 xi ^2right)^{7/60}
frac{20 left(-1323 xi ^3-13798 xi ^2+210 xi +700right)}{2401 xi ^4-196 xi ^3-1029 xi ^2+4 xi +20} g(xi) dxi=\
&&
left.frac{left(-49 x+2 sqrt{246}+2right)^{frac{sqrt{frac{2}{123}}}{15}-frac{13}{15}} left(49 x+2 sqrt{246}-2right)^{frac{-1599-sqrt{246}}{1845}} left(1-49 x^2right)^{7/60}}{x}
left(frac{75}{98} left(441 x^2-20 x-100right) g(x)-frac{1125}{98} x left(49 x^2-4 x-20right) g'(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := x^(1/3) Hypergeometric2F1[-(2/15), -(1/12), 2/3, 49 x^2];
F[x_] := (1 - 49 x^2)^(
7/60)/((2 + 2 Sqrt[246] - 49 x)^(13/15 - Sqrt[2/123]/15)
x (-2 + 2 Sqrt[246] + 49 x)^((1599 + Sqrt[246])/
1845)) (-(1125/98) x (-20 - 4 x + 49 x^2) g'[x] +
75/98 (-100 - 20 x + 441 x^2) g[x]);
{x0, x} = RandomReal[{0, 1/7}, 2, WorkingPrecision -> 40];
NIntegrate[(1 - 49 xi^2)^(
7/60)/((2 + 2 Sqrt[246] - 49 xi)^((1599 - Sqrt[246])/
1845) (-2 + 2 Sqrt[246] + 49 xi)^(13/15 + Sqrt[2/123]/15)) (
20 (700 + 210 xi - 13798 xi^2 - 1323 xi^3))/(
20 + 4 xi - 1029 xi^2 - 196 xi^3 + 2401 xi^4) g[xi], {xi, x0, x},
WorkingPrecision -> 40]
F[x] - F[x0]
Update 2: In order to avoid confusion let me write down in a concise way how all those results were generated.
Let $L:=d^2/d x^2 + a_1(x) d/d x + a_0(x)$ and $G:=r_1(x) d/d x + r_0(x)$ be a pair of differential operators or order two and order one respectively with coefficients being rational functions in $x$.
Then let $Q(x):= int r_0(x)/r_1(x) dx$ and let $(R_0(x),R_1(x))$ be the inverse gauge of the operator $L$ and the gauge $G$. In other words the functions $(R_0(x),R_1(x))$ are such that:
begin{equation}
left( r_0(x) + r_1(x) frac{d}{d x}right)left(R_0(x) + R_1(x) frac{d}{d x}right) f(x) = L f(x) quad (i)
end{equation}
Note that the inverse gauge can always be found by making a polynomial ansatz for $R_0(x),R_1(x)$ inserting that ansatz to the equation above and then by matching the coefficients at respective derivatives solving for the unknown polynomial coefficients.
Now let the function $g(x)$ solve the ODE below:
begin{equation}
L g(x) = 0 quad (ii)
end{equation}
Then the following identity holds true:
begin{equation}
intlimits_{x_0}^x frac{exp(Q(xi)}{r_1(xi)} g(xi) dxi =
exp(Q(x)) left.left[ R_0(x) g(x) + R_1(x) g^{'}(x) right] right|_{x_0}^x
end{equation}
Note that the proof of this statement follows in a straightforward way from differentiating the right hand side and then using the properties $(i)$ and $(ii)$. As such this identity is not astounding . However the tricky parts is to find the inverse gauge and also to solve the ODE $(ii)$.
Having said all this my final question is now how do you prove such identities as above in a different way?
ordinary-differential-equations special-functions hypergeometric-function
$endgroup$
Let $x_0,x in (0,1/10)$ and define:
begin{equation}
g(x):= F_{2,1}left[frac{1}{13},frac{1}{17},frac{1}{5}; 100 x^2 right]
end{equation}
Then the following identity holds true:
begin{eqnarray}
&&intlimits_{x_0}^x frac{left(2404500 xi ^3+13746115 xi ^2-47073 xi -161109right) }{(1-10 xi )^{5513/7140} xi ^{116/35} (10 xi +1)^{5683/7140}} g(xi )dxi =\
&&
left.frac{(1-10 x)^{1627/7140} (10 x+1)^{1457/7140} }{x^{116/35}} left(-97461 (10 x-1) (10 x+1) x^2 g'(x)-1785 left(840 x^2-13 x-39right) x g(x)right) right|_{x_0}^x
end{eqnarray}
In[815]:= x =.; x0 =.; xi =.; Clear[g]; Clear[F]; Clear[f]; Clear[f1];
g[x_] := Hypergeometric2F1[1/13, 1/17, 1/5, 100 x^2];
F[x_] := ((1 - 10 x)^(1627/7140) (1 + 10 x)^(1457/7140))/x^(
116/35) (- 97461 x^2 (-1 + 10 x) (1 + 10 x) g'[x] -
1785 x (-39 - 13 x + 840 x^2) g[x]);
f[x_] := NIntegrate[ (1 - 10 xi)^(1627/7140 - 1) (1 + 10 xi)^(
1457/7140 -
1) (-161109 - 47073 xi + 13746115 xi^2 + 2404500 xi^3)/( xi^(
116/35) ) g[xi], {xi, x0, x}, WorkingPrecision -> 40];
{x, x0} = RandomReal[{0, 1/10}, 2, WorkingPrecision -> 40];
f1[x_] := F[x] - F[x0];
{f[x], f1[x]} // MatrixForm
This identity comes on one hand from applying the inverse gauge transformation (see https://www.math.fsu.edu/~eimamogl/hypergeometricsols/hypergeometricsols.mpl) to the differential operator:
begin{equation}
L:=frac{d^2}{d x^2} + frac{140500 x^2+663}{1105 x (10 x-1) (10 x+1)} frac{d}{d x}+ frac{400}{221 (10 x-1) (10 x+1)}
end{equation}
and to the gauge
begin{equation}
G:=-frac{39 left(1785 left(100 x^2-1right) x frac{d}{d x} -514500 x^2+425 x+5916right)}{x left(2404500 x^3+13746115 x^2-47073 x-161109right)}
end{equation}
On the other hand the identity in question comes from solving the in-homogeneous first order ODE
begin{equation}
G left[f(x) right] = g(x)
end{equation}
by the standard way of variation of constants.
Note 1: The function $g(x)$ satisfies the equation:
begin{equation}
Lleft[ g(x) right] =0
end{equation}
In[855]:= x =.; FullSimplify[(D[#, {x, 2}] + (663 + 140500 x^2)/(
1105 x (-1 + 10 x) (1 + 10 x)) D[#, x] +
400/(221 (-1 + 10 x) (1 + 10 x)) #) & /@ {Hypergeometric2F1[1/13,
1/17, 1/5, 100 x^2]}]
Out[855]= {0}
Note 2: The gauge $G$ corresponds to the first element of the global integral basis of the operator $L$, a basis which has been normalized at infinity (see https://arxiv.org/pdf/1606.01576.pdf for details).
Update: Here is actually another example of a similar integral identity:
Now define:
begin{equation}
g(x):= F_{2,1}left[frac{1}{11},frac{1}{3},frac{1}{2}; 100 x^2 right]
end{equation}
Then the following holds:
begin{eqnarray}
&&!!!!!!!!intlimits_{x_0}^x frac{sqrt[3]{1-10 xi } (10 xi +1)^{2/15} left(42500 xi ^3+170850 xi ^2-4620 xi -4389right)}{1155 xi ^{24/5}} g(xi) d xi = \
&&!!!!!!!!frac{(1-10 x)^{4/3} (10 x+1)^{17/15}}{x^{24/5}}left.left( -frac{5}{14} (10 x-1) (10 x+1) x^2 g'(x)-frac{1}{77} left(500 x^2-55 x-77right) x g(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := Hypergeometric2F1[1/11, 1/3, 1/2, 100 x^2];
F[x_] := ((1 - 10 x)^(4/3) (1 + 10 x)^(17/15))/x^(
24/5) (-(5/14) x^2 (-1 + 10 x) (1 + 10 x) g'[x] -
1/77 x (-77 - 55 x + 500 x^2) g[x]);
f[x_] := (NIntegrate[( (1 - 10 xi)^(1/3) (1 + 10 xi)^(
2/15) (-4389 - 4620 xi + 170850 xi^2 + 42500 xi^3))/(
1155 xi^(24/5)) g[xi], {xi, x0, x}, WorkingPrecision -> 40]);
{x, x0} = RandomReal[{0, 1/10}, 2, WorkingPrecision -> 40];
{f[x], F[x] - F[x0]} // MatrixForm
The identity above has been derived in exactly the same way as the one before except that now we started from an abscissa transformed $x rightarrow 100 x^2$ Gaussian hypergeometric operator with parameters $(a,b,c)=(1/11,1/3,1/2)$ and then used the first element of the infinity-normalized global integral basis to construct the relevant inverse gauge transformation.
Update 1:
Here are two other examples which I generated this morning.
Firstly we define:
begin{equation}
g(x):=F_{2,1}left[-frac{1}{4},-frac{1}{6},frac{1}{2};9 x^2right]
end{equation}
Then the following holds true:
begin{eqnarray}
&&intlimits_{x_0}^x frac{sqrt[12]{1-9 xi ^2} e^{-4 sqrt{frac{2}{97}} tan ^{-1}left(sqrt{frac{2}{97}} (5 xi +8)right)}}{left(10 xi ^2+32 xi +45right)^{3/4}}
frac{45 left(2400 xi ^3+10547 xi ^2+8640 xi +5625right)}{left(90 xi ^4+288 xi ^3+395 xi ^2-32 xi -45right)}
g(xi) dxi=\
&&left.frac{sqrt[12]{1-9 x^2} e^{-4 sqrt{frac{2}{97}} tan ^{-1}left(sqrt{frac{2}{97}} (5 x+8)right)}}{x left(10 x^2+32 x+45right)^{3/4}}
left(450 x^2 g(x)-90 x left(10 x^2+32 x+45right) g'(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := Hypergeometric2F1[-1/4, -1/6, 1/2, 9 x^2];
F[x_] := (1 - 9 x^2)^(1/12)/(
E^(4 Sqrt[2/97] ArcTan[Sqrt[2/97] (8 + 5 x)])
x (45 + 32 x + 10 x^2)^(
3/4)) (-90 x (45 + 32 x + 10 x^2) g'[x] + 450 x^2 g[x]);
{x0, x} = RandomReal[{0, 1/3}, 2, WorkingPrecision -> 40];
X1 = NIntegrate[ ((1 - 9 xi^2)^(1/12))/(
E^(4 Sqrt[2/97]
ArcTan[Sqrt[2/97] (8 + 5 xi)]) (45 + 32 xi + 10 xi^2)^(
3/4)) (45 (5625 + 8640 xi + 10547 xi^2 + 2400 xi^3))/(-45 -
32 xi + 395 xi^2 + 288 xi^3 + 90 xi^4) g[xi], {xi, x0, x},
WorkingPrecision -> 40]
X2 = F[x] - F[x0]
Secondly we define:
begin{equation}
g(x):=x^{1/3} F_{2,1}left[-frac{2}{15},-frac{1}{12},frac{2}{3};49 x^2right]
end{equation}
Then the following holds true:
begin{eqnarray}
&&intlimits_{x_0}^x left(-49 xi +2 sqrt{246}+2right)^{frac{sqrt{246}-1599}{1845}} left(49 xi +2 sqrt{246}-2right)^{-frac{13}{15}-frac{sqrt{frac{2}{123}}}{15}} cdot\
&&
left(1-49 xi ^2right)^{7/60}
frac{20 left(-1323 xi ^3-13798 xi ^2+210 xi +700right)}{2401 xi ^4-196 xi ^3-1029 xi ^2+4 xi +20} g(xi) dxi=\
&&
left.frac{left(-49 x+2 sqrt{246}+2right)^{frac{sqrt{frac{2}{123}}}{15}-frac{13}{15}} left(49 x+2 sqrt{246}-2right)^{frac{-1599-sqrt{246}}{1845}} left(1-49 x^2right)^{7/60}}{x}
left(frac{75}{98} left(441 x^2-20 x-100right) g(x)-frac{1125}{98} x left(49 x^2-4 x-20right) g'(x)right)right|_{x_0}^x
end{eqnarray}
g[x_] := x^(1/3) Hypergeometric2F1[-(2/15), -(1/12), 2/3, 49 x^2];
F[x_] := (1 - 49 x^2)^(
7/60)/((2 + 2 Sqrt[246] - 49 x)^(13/15 - Sqrt[2/123]/15)
x (-2 + 2 Sqrt[246] + 49 x)^((1599 + Sqrt[246])/
1845)) (-(1125/98) x (-20 - 4 x + 49 x^2) g'[x] +
75/98 (-100 - 20 x + 441 x^2) g[x]);
{x0, x} = RandomReal[{0, 1/7}, 2, WorkingPrecision -> 40];
NIntegrate[(1 - 49 xi^2)^(
7/60)/((2 + 2 Sqrt[246] - 49 xi)^((1599 - Sqrt[246])/
1845) (-2 + 2 Sqrt[246] + 49 xi)^(13/15 + Sqrt[2/123]/15)) (
20 (700 + 210 xi - 13798 xi^2 - 1323 xi^3))/(
20 + 4 xi - 1029 xi^2 - 196 xi^3 + 2401 xi^4) g[xi], {xi, x0, x},
WorkingPrecision -> 40]
F[x] - F[x0]
Update 2: In order to avoid confusion let me write down in a concise way how all those results were generated.
Let $L:=d^2/d x^2 + a_1(x) d/d x + a_0(x)$ and $G:=r_1(x) d/d x + r_0(x)$ be a pair of differential operators or order two and order one respectively with coefficients being rational functions in $x$.
Then let $Q(x):= int r_0(x)/r_1(x) dx$ and let $(R_0(x),R_1(x))$ be the inverse gauge of the operator $L$ and the gauge $G$. In other words the functions $(R_0(x),R_1(x))$ are such that:
begin{equation}
left( r_0(x) + r_1(x) frac{d}{d x}right)left(R_0(x) + R_1(x) frac{d}{d x}right) f(x) = L f(x) quad (i)
end{equation}
Note that the inverse gauge can always be found by making a polynomial ansatz for $R_0(x),R_1(x)$ inserting that ansatz to the equation above and then by matching the coefficients at respective derivatives solving for the unknown polynomial coefficients.
Now let the function $g(x)$ solve the ODE below:
begin{equation}
L g(x) = 0 quad (ii)
end{equation}
Then the following identity holds true:
begin{equation}
intlimits_{x_0}^x frac{exp(Q(xi)}{r_1(xi)} g(xi) dxi =
exp(Q(x)) left.left[ R_0(x) g(x) + R_1(x) g^{'}(x) right] right|_{x_0}^x
end{equation}
Note that the proof of this statement follows in a straightforward way from differentiating the right hand side and then using the properties $(i)$ and $(ii)$. As such this identity is not astounding . However the tricky parts is to find the inverse gauge and also to solve the ODE $(ii)$.
Having said all this my final question is now how do you prove such identities as above in a different way?
ordinary-differential-equations special-functions hypergeometric-function
ordinary-differential-equations special-functions hypergeometric-function
edited Jan 11 at 15:50
Przemo
asked Jan 10 at 16:07
PrzemoPrzemo
4,38311031
4,38311031
$begingroup$
I would appreciate if somebody explained the reason for down-voting my question? Is there anything unclear in here? I just show an example of a highly non-trivial integral that can be done in closed form. Moreover this is not an isolated example but it is clear that one can construct a whole family of such identities by playing around with parameters.
$endgroup$
– Przemo
Jan 10 at 16:31
add a comment |
$begingroup$
I would appreciate if somebody explained the reason for down-voting my question? Is there anything unclear in here? I just show an example of a highly non-trivial integral that can be done in closed form. Moreover this is not an isolated example but it is clear that one can construct a whole family of such identities by playing around with parameters.
$endgroup$
– Przemo
Jan 10 at 16:31
$begingroup$
I would appreciate if somebody explained the reason for down-voting my question? Is there anything unclear in here? I just show an example of a highly non-trivial integral that can be done in closed form. Moreover this is not an isolated example but it is clear that one can construct a whole family of such identities by playing around with parameters.
$endgroup$
– Przemo
Jan 10 at 16:31
$begingroup$
I would appreciate if somebody explained the reason for down-voting my question? Is there anything unclear in here? I just show an example of a highly non-trivial integral that can be done in closed form. Moreover this is not an isolated example but it is clear that one can construct a whole family of such identities by playing around with parameters.
$endgroup$
– Przemo
Jan 10 at 16:31
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068824%2fintegral-involving-a-gaussian-hypergeometric-function-and-a-rational-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068824%2fintegral-involving-a-gaussian-hypergeometric-function-and-a-rational-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I would appreciate if somebody explained the reason for down-voting my question? Is there anything unclear in here? I just show an example of a highly non-trivial integral that can be done in closed form. Moreover this is not an isolated example but it is clear that one can construct a whole family of such identities by playing around with parameters.
$endgroup$
– Przemo
Jan 10 at 16:31