(Self-Answered) A Nice Substitution for an Improper Integral
$begingroup$
Evaluate
$$
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx , , , (phi>0)
$$
calculus improper-integrals
$endgroup$
add a comment |
$begingroup$
Evaluate
$$
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx , , , (phi>0)
$$
calculus improper-integrals
$endgroup$
add a comment |
$begingroup$
Evaluate
$$
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx , , , (phi>0)
$$
calculus improper-integrals
$endgroup$
Evaluate
$$
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx , , , (phi>0)
$$
calculus improper-integrals
calculus improper-integrals
asked Jan 14 at 12:41
NetUser5y62NetUser5y62
525215
525215
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Solution
$$ small
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
$$
Notice that with the substitution $y=frac{1}{x}$,
$$begin{aligned}
int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
&=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
end{aligned}$$
Therefore
$$begin{aligned}
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
end{aligned}$$
$endgroup$
add a comment |
$begingroup$
Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$
Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073189%2fself-answered-a-nice-substitution-for-an-improper-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Solution
$$ small
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
$$
Notice that with the substitution $y=frac{1}{x}$,
$$begin{aligned}
int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
&=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
end{aligned}$$
Therefore
$$begin{aligned}
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
end{aligned}$$
$endgroup$
add a comment |
$begingroup$
Solution
$$ small
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
$$
Notice that with the substitution $y=frac{1}{x}$,
$$begin{aligned}
int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
&=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
end{aligned}$$
Therefore
$$begin{aligned}
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
end{aligned}$$
$endgroup$
add a comment |
$begingroup$
Solution
$$ small
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
$$
Notice that with the substitution $y=frac{1}{x}$,
$$begin{aligned}
int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
&=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
end{aligned}$$
Therefore
$$begin{aligned}
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
end{aligned}$$
$endgroup$
Solution
$$ small
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
$$
Notice that with the substitution $y=frac{1}{x}$,
$$begin{aligned}
int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
&=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
end{aligned}$$
Therefore
$$begin{aligned}
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
end{aligned}$$
answered Jan 14 at 12:41
NetUser5y62NetUser5y62
525215
525215
add a comment |
add a comment |
$begingroup$
Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$
Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$
$endgroup$
add a comment |
$begingroup$
Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$
Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$
$endgroup$
add a comment |
$begingroup$
Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$
Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$
$endgroup$
Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$
Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$
answered Jan 16 at 3:45
Frank W.Frank W.
3,8101321
3,8101321
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073189%2fself-answered-a-nice-substitution-for-an-improper-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown