(Self-Answered) A Nice Substitution for an Improper Integral












3












$begingroup$


Evaluate



$$
int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx , , , (phi>0)
$$










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Evaluate



    $$
    int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx , , , (phi>0)
    $$










    share|cite|improve this question









    $endgroup$















      3












      3








      3


      2



      $begingroup$


      Evaluate



      $$
      int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx , , , (phi>0)
      $$










      share|cite|improve this question









      $endgroup$




      Evaluate



      $$
      int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx , , , (phi>0)
      $$







      calculus improper-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 14 at 12:41









      NetUser5y62NetUser5y62

      525215




      525215






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          Solution



          $$ small
          int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
          $$



          Notice that with the substitution $y=frac{1}{x}$,
          $$begin{aligned}
          int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
          &=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
          end{aligned}$$



          Therefore



          $$begin{aligned}
          int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
          end{aligned}$$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$



            Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073189%2fself-answered-a-nice-substitution-for-an-improper-integral%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6












              $begingroup$

              Solution



              $$ small
              int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
              $$



              Notice that with the substitution $y=frac{1}{x}$,
              $$begin{aligned}
              int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
              &=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
              end{aligned}$$



              Therefore



              $$begin{aligned}
              int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
              end{aligned}$$






              share|cite|improve this answer









              $endgroup$


















                6












                $begingroup$

                Solution



                $$ small
                int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
                $$



                Notice that with the substitution $y=frac{1}{x}$,
                $$begin{aligned}
                int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
                &=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
                end{aligned}$$



                Therefore



                $$begin{aligned}
                int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
                end{aligned}$$






                share|cite|improve this answer









                $endgroup$
















                  6












                  6








                  6





                  $begingroup$

                  Solution



                  $$ small
                  int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
                  $$



                  Notice that with the substitution $y=frac{1}{x}$,
                  $$begin{aligned}
                  int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
                  &=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
                  end{aligned}$$



                  Therefore



                  $$begin{aligned}
                  int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
                  end{aligned}$$






                  share|cite|improve this answer









                  $endgroup$



                  Solution



                  $$ small
                  int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx = int_0^{1} frac{1}{(1+x^2)(1+x^{phi})}, dx + int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx
                  $$



                  Notice that with the substitution $y=frac{1}{x}$,
                  $$begin{aligned}
                  int_1^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_1^0 frac{1}{left( 1+frac{1}{y^2}right)left(1+frac{1}{y^{phi}} right)}cdot left(frac{-1}{y^2} right), dy\
                  &=int_0^1frac{y^{phi}}{(1+y^2)(1+y^{phi})}, dy
                  end{aligned}$$



                  Therefore



                  $$begin{aligned}
                  int_0^{+infty} frac{1}{(1+x^2)(1+x^{phi})}, dx &= int_0^1frac{1+x^{phi}}{(1+x^2)(1+x^{phi})}, dx \ &= int_0^1 frac{1}{1+x^2}, dx \ &= arctan x|_0^1 \ &= frac{pi}{4}
                  end{aligned}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 14 at 12:41









                  NetUser5y62NetUser5y62

                  525215




                  525215























                      1












                      $begingroup$

                      Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$



                      Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$



                        Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$



                          Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$






                          share|cite|improve this answer









                          $endgroup$



                          Another way would be to make the substitution $xmapstotan x$ so that$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =intlimits_0^{pi/2}mathrm dx-intlimits_0^{pi/2}mathrm dx,frac {tan^n x}{1+tan^nx}\ & =frac {pi}2-intlimits_0^{pi/2}mathrm dx,frac 1{1+cot^nx}end{align*}$$Now use the identity that$$cot x=tanleft(frac {pi}2-xright)$$to get that$$begin{align*}mathfrak{I} & =frac {pi}2-intlimits_0^{pi/2}frac {mathrm dx}{1+tan^nx}\ & =frac {pi}2-mathfrak{I}end{align*}$$



                          Now isolate $mathfrak{I}$ to get that$$intlimits_0^{infty}frac {mathrm dx}{(1+x^2)(1+x^n)}color{blue}{=frac {pi}4}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 16 at 3:45









                          Frank W.Frank W.

                          3,8101321




                          3,8101321






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073189%2fself-answered-a-nice-substitution-for-an-improper-integral%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Human spaceflight

                              Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                              張江高科駅