How calculate extremes of the functional?
$begingroup$
Is it also here to use the Euler-Lagrange equation? Could someone tell me how it will look like?
$${F}_{u} = int_{0}^{1} left( uu' + uu''^{2} + uu'' + u'u'' + 2u'' right) mbox{d}x$$
$$u(0) = u'(0) = u(1) = 0$$
$$u'(1) = 1$$
functional-analysis euler-lagrange-equation
$endgroup$
add a comment |
$begingroup$
Is it also here to use the Euler-Lagrange equation? Could someone tell me how it will look like?
$${F}_{u} = int_{0}^{1} left( uu' + uu''^{2} + uu'' + u'u'' + 2u'' right) mbox{d}x$$
$$u(0) = u'(0) = u(1) = 0$$
$$u'(1) = 1$$
functional-analysis euler-lagrange-equation
$endgroup$
add a comment |
$begingroup$
Is it also here to use the Euler-Lagrange equation? Could someone tell me how it will look like?
$${F}_{u} = int_{0}^{1} left( uu' + uu''^{2} + uu'' + u'u'' + 2u'' right) mbox{d}x$$
$$u(0) = u'(0) = u(1) = 0$$
$$u'(1) = 1$$
functional-analysis euler-lagrange-equation
$endgroup$
Is it also here to use the Euler-Lagrange equation? Could someone tell me how it will look like?
$${F}_{u} = int_{0}^{1} left( uu' + uu''^{2} + uu'' + u'u'' + 2u'' right) mbox{d}x$$
$$u(0) = u'(0) = u(1) = 0$$
$$u'(1) = 1$$
functional-analysis euler-lagrange-equation
functional-analysis euler-lagrange-equation
asked Jan 14 at 12:33
SvsSvs
62
62
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$${L} = fleft(x,u,u',u''right)$$
$$frac{ partial {L} }{ mbox{d}u } - frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) + frac{ mbox{d}^{2}}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = 0$$
But I don't know how calculate this diverates:
$$frac{ partial {L} }{ mbox{d}u } =$$
$$frac{ partial {L} }{ mbox{d}u' }= $$
$$frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) =$$
$$frac{ partial {L} }{ mbox{d}u'' } = $$
$$frac{ mbox{d}^2}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = $$
$endgroup$
add a comment |
$begingroup$
Hint: The 1st, 4th & 5th term in OP's Lagrangian are total derivative terms, which don't contribute to the EL equations. The 2nd & 3rd term is $$L~=~u u^{primeprime}(u^{primeprime}+1),$$ leading to EL equation
$$0~=~frac{partial L}{partial u}+ frac{d^2}{dx^{2}}frac{partial L}{partial u^{primeprime}}~=~(3u^{primeprime}-2)u^{primeprime} +4u^{prime}u^{primeprimeprime} +2u u^{primeprimeprimeprime}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073181%2fhow-calculate-extremes-of-the-functional%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$${L} = fleft(x,u,u',u''right)$$
$$frac{ partial {L} }{ mbox{d}u } - frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) + frac{ mbox{d}^{2}}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = 0$$
But I don't know how calculate this diverates:
$$frac{ partial {L} }{ mbox{d}u } =$$
$$frac{ partial {L} }{ mbox{d}u' }= $$
$$frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) =$$
$$frac{ partial {L} }{ mbox{d}u'' } = $$
$$frac{ mbox{d}^2}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = $$
$endgroup$
add a comment |
$begingroup$
$${L} = fleft(x,u,u',u''right)$$
$$frac{ partial {L} }{ mbox{d}u } - frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) + frac{ mbox{d}^{2}}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = 0$$
But I don't know how calculate this diverates:
$$frac{ partial {L} }{ mbox{d}u } =$$
$$frac{ partial {L} }{ mbox{d}u' }= $$
$$frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) =$$
$$frac{ partial {L} }{ mbox{d}u'' } = $$
$$frac{ mbox{d}^2}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = $$
$endgroup$
add a comment |
$begingroup$
$${L} = fleft(x,u,u',u''right)$$
$$frac{ partial {L} }{ mbox{d}u } - frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) + frac{ mbox{d}^{2}}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = 0$$
But I don't know how calculate this diverates:
$$frac{ partial {L} }{ mbox{d}u } =$$
$$frac{ partial {L} }{ mbox{d}u' }= $$
$$frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) =$$
$$frac{ partial {L} }{ mbox{d}u'' } = $$
$$frac{ mbox{d}^2}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = $$
$endgroup$
$${L} = fleft(x,u,u',u''right)$$
$$frac{ partial {L} }{ mbox{d}u } - frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) + frac{ mbox{d}^{2}}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = 0$$
But I don't know how calculate this diverates:
$$frac{ partial {L} }{ mbox{d}u } =$$
$$frac{ partial {L} }{ mbox{d}u' }= $$
$$frac{ mbox{d}}{ mbox{d}x } left( frac{ partial {L} }{ partial u^{'} } right) =$$
$$frac{ partial {L} }{ mbox{d}u'' } = $$
$$frac{ mbox{d}^2}{ mbox{d}x^{2} }left( frac{ partial {L} }{ partial u^{''} } right) = $$
answered Jan 15 at 20:00
SvsSvs
62
62
add a comment |
add a comment |
$begingroup$
Hint: The 1st, 4th & 5th term in OP's Lagrangian are total derivative terms, which don't contribute to the EL equations. The 2nd & 3rd term is $$L~=~u u^{primeprime}(u^{primeprime}+1),$$ leading to EL equation
$$0~=~frac{partial L}{partial u}+ frac{d^2}{dx^{2}}frac{partial L}{partial u^{primeprime}}~=~(3u^{primeprime}-2)u^{primeprime} +4u^{prime}u^{primeprimeprime} +2u u^{primeprimeprimeprime}.$$
$endgroup$
add a comment |
$begingroup$
Hint: The 1st, 4th & 5th term in OP's Lagrangian are total derivative terms, which don't contribute to the EL equations. The 2nd & 3rd term is $$L~=~u u^{primeprime}(u^{primeprime}+1),$$ leading to EL equation
$$0~=~frac{partial L}{partial u}+ frac{d^2}{dx^{2}}frac{partial L}{partial u^{primeprime}}~=~(3u^{primeprime}-2)u^{primeprime} +4u^{prime}u^{primeprimeprime} +2u u^{primeprimeprimeprime}.$$
$endgroup$
add a comment |
$begingroup$
Hint: The 1st, 4th & 5th term in OP's Lagrangian are total derivative terms, which don't contribute to the EL equations. The 2nd & 3rd term is $$L~=~u u^{primeprime}(u^{primeprime}+1),$$ leading to EL equation
$$0~=~frac{partial L}{partial u}+ frac{d^2}{dx^{2}}frac{partial L}{partial u^{primeprime}}~=~(3u^{primeprime}-2)u^{primeprime} +4u^{prime}u^{primeprimeprime} +2u u^{primeprimeprimeprime}.$$
$endgroup$
Hint: The 1st, 4th & 5th term in OP's Lagrangian are total derivative terms, which don't contribute to the EL equations. The 2nd & 3rd term is $$L~=~u u^{primeprime}(u^{primeprime}+1),$$ leading to EL equation
$$0~=~frac{partial L}{partial u}+ frac{d^2}{dx^{2}}frac{partial L}{partial u^{primeprime}}~=~(3u^{primeprime}-2)u^{primeprime} +4u^{prime}u^{primeprimeprime} +2u u^{primeprimeprimeprime}.$$
answered Jan 17 at 20:58
QmechanicQmechanic
5,17711858
5,17711858
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073181%2fhow-calculate-extremes-of-the-functional%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown