Inverse of identity minus matrix exponential
$begingroup$
I am trying to analytically find the inverse of a matrix given by:
begin{align}
W = left( I - alpha e^A right)^{-1},
end{align}
where $I$ is the identity matrix of appropriate size, $e^A$ denotes matrix exponential of $A$ and
begin{align}
A = begin{bmatrix}
frac{ (1-1)^2 }{ sigma^2 } & frac{ (2-1)^2 }{ sigma^2 } &
frac{ (3-1)^2 }{ sigma^2 } & dots & frac{ (n-1)^2 }{ sigma^2 } \
frac{ (1-2)^2 }{ sigma^2 } & frac{ (2-2)^2 }{ sigma^2 } &
frac{ (3-2)^2 }{ sigma^2 } & dots & frac{ (n-2)^2 }{ sigma^2 } \
vdots & vdots & vdots & ddots & vdots \
frac{ (1-N)^2 }{ sigma^2 } & frac{ (2-N)^2 }{ sigma^2 } &
frac{ (3-N)^2 }{ sigma^2 } & dots & frac{ (N-N)^2 }{ sigma^2 } \
end{bmatrix}
end{align}
Any help would be much appreciated!
Thank you very much,
Katie
matrices inverse matrix-exponential
$endgroup$
add a comment |
$begingroup$
I am trying to analytically find the inverse of a matrix given by:
begin{align}
W = left( I - alpha e^A right)^{-1},
end{align}
where $I$ is the identity matrix of appropriate size, $e^A$ denotes matrix exponential of $A$ and
begin{align}
A = begin{bmatrix}
frac{ (1-1)^2 }{ sigma^2 } & frac{ (2-1)^2 }{ sigma^2 } &
frac{ (3-1)^2 }{ sigma^2 } & dots & frac{ (n-1)^2 }{ sigma^2 } \
frac{ (1-2)^2 }{ sigma^2 } & frac{ (2-2)^2 }{ sigma^2 } &
frac{ (3-2)^2 }{ sigma^2 } & dots & frac{ (n-2)^2 }{ sigma^2 } \
vdots & vdots & vdots & ddots & vdots \
frac{ (1-N)^2 }{ sigma^2 } & frac{ (2-N)^2 }{ sigma^2 } &
frac{ (3-N)^2 }{ sigma^2 } & dots & frac{ (N-N)^2 }{ sigma^2 } \
end{bmatrix}
end{align}
Any help would be much appreciated!
Thank you very much,
Katie
matrices inverse matrix-exponential
$endgroup$
add a comment |
$begingroup$
I am trying to analytically find the inverse of a matrix given by:
begin{align}
W = left( I - alpha e^A right)^{-1},
end{align}
where $I$ is the identity matrix of appropriate size, $e^A$ denotes matrix exponential of $A$ and
begin{align}
A = begin{bmatrix}
frac{ (1-1)^2 }{ sigma^2 } & frac{ (2-1)^2 }{ sigma^2 } &
frac{ (3-1)^2 }{ sigma^2 } & dots & frac{ (n-1)^2 }{ sigma^2 } \
frac{ (1-2)^2 }{ sigma^2 } & frac{ (2-2)^2 }{ sigma^2 } &
frac{ (3-2)^2 }{ sigma^2 } & dots & frac{ (n-2)^2 }{ sigma^2 } \
vdots & vdots & vdots & ddots & vdots \
frac{ (1-N)^2 }{ sigma^2 } & frac{ (2-N)^2 }{ sigma^2 } &
frac{ (3-N)^2 }{ sigma^2 } & dots & frac{ (N-N)^2 }{ sigma^2 } \
end{bmatrix}
end{align}
Any help would be much appreciated!
Thank you very much,
Katie
matrices inverse matrix-exponential
$endgroup$
I am trying to analytically find the inverse of a matrix given by:
begin{align}
W = left( I - alpha e^A right)^{-1},
end{align}
where $I$ is the identity matrix of appropriate size, $e^A$ denotes matrix exponential of $A$ and
begin{align}
A = begin{bmatrix}
frac{ (1-1)^2 }{ sigma^2 } & frac{ (2-1)^2 }{ sigma^2 } &
frac{ (3-1)^2 }{ sigma^2 } & dots & frac{ (n-1)^2 }{ sigma^2 } \
frac{ (1-2)^2 }{ sigma^2 } & frac{ (2-2)^2 }{ sigma^2 } &
frac{ (3-2)^2 }{ sigma^2 } & dots & frac{ (n-2)^2 }{ sigma^2 } \
vdots & vdots & vdots & ddots & vdots \
frac{ (1-N)^2 }{ sigma^2 } & frac{ (2-N)^2 }{ sigma^2 } &
frac{ (3-N)^2 }{ sigma^2 } & dots & frac{ (N-N)^2 }{ sigma^2 } \
end{bmatrix}
end{align}
Any help would be much appreciated!
Thank you very much,
Katie
matrices inverse matrix-exponential
matrices inverse matrix-exponential
asked Jan 14 at 11:58
KatieKatie
636
636
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Define the variables
$$eqalign{
lambda &= log(alpha) &implies alpha = e^lambda cr
X &= -tfrac{1}{2}(A+lambda I) cr
}$$
Then
$$eqalign{
W^{-1} &= Big(I-e^{-2X}Big) &= 2e^{-X}sinh(X) cr
W &= Big(I-e^{-2X}Big)^{-1} &= tfrac{1}{2}e^{X}{,rm csch}(X) cr
}$$
$endgroup$
add a comment |
$begingroup$
You can take out $frac{1}{sigma^2}$. Notice also that your matrix is symmetric, and of the form: Find rank of the matrix $a_{ij}=(i-j)^2$, $i,j=1,dots, n$
You can make it upper triangular by a few transformations (after which it's easy to transform to identity).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073155%2finverse-of-identity-minus-matrix-exponential%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Define the variables
$$eqalign{
lambda &= log(alpha) &implies alpha = e^lambda cr
X &= -tfrac{1}{2}(A+lambda I) cr
}$$
Then
$$eqalign{
W^{-1} &= Big(I-e^{-2X}Big) &= 2e^{-X}sinh(X) cr
W &= Big(I-e^{-2X}Big)^{-1} &= tfrac{1}{2}e^{X}{,rm csch}(X) cr
}$$
$endgroup$
add a comment |
$begingroup$
Define the variables
$$eqalign{
lambda &= log(alpha) &implies alpha = e^lambda cr
X &= -tfrac{1}{2}(A+lambda I) cr
}$$
Then
$$eqalign{
W^{-1} &= Big(I-e^{-2X}Big) &= 2e^{-X}sinh(X) cr
W &= Big(I-e^{-2X}Big)^{-1} &= tfrac{1}{2}e^{X}{,rm csch}(X) cr
}$$
$endgroup$
add a comment |
$begingroup$
Define the variables
$$eqalign{
lambda &= log(alpha) &implies alpha = e^lambda cr
X &= -tfrac{1}{2}(A+lambda I) cr
}$$
Then
$$eqalign{
W^{-1} &= Big(I-e^{-2X}Big) &= 2e^{-X}sinh(X) cr
W &= Big(I-e^{-2X}Big)^{-1} &= tfrac{1}{2}e^{X}{,rm csch}(X) cr
}$$
$endgroup$
Define the variables
$$eqalign{
lambda &= log(alpha) &implies alpha = e^lambda cr
X &= -tfrac{1}{2}(A+lambda I) cr
}$$
Then
$$eqalign{
W^{-1} &= Big(I-e^{-2X}Big) &= 2e^{-X}sinh(X) cr
W &= Big(I-e^{-2X}Big)^{-1} &= tfrac{1}{2}e^{X}{,rm csch}(X) cr
}$$
edited Jan 16 at 2:01
answered Jan 16 at 1:44
greggreg
8,9551824
8,9551824
add a comment |
add a comment |
$begingroup$
You can take out $frac{1}{sigma^2}$. Notice also that your matrix is symmetric, and of the form: Find rank of the matrix $a_{ij}=(i-j)^2$, $i,j=1,dots, n$
You can make it upper triangular by a few transformations (after which it's easy to transform to identity).
$endgroup$
add a comment |
$begingroup$
You can take out $frac{1}{sigma^2}$. Notice also that your matrix is symmetric, and of the form: Find rank of the matrix $a_{ij}=(i-j)^2$, $i,j=1,dots, n$
You can make it upper triangular by a few transformations (after which it's easy to transform to identity).
$endgroup$
add a comment |
$begingroup$
You can take out $frac{1}{sigma^2}$. Notice also that your matrix is symmetric, and of the form: Find rank of the matrix $a_{ij}=(i-j)^2$, $i,j=1,dots, n$
You can make it upper triangular by a few transformations (after which it's easy to transform to identity).
$endgroup$
You can take out $frac{1}{sigma^2}$. Notice also that your matrix is symmetric, and of the form: Find rank of the matrix $a_{ij}=(i-j)^2$, $i,j=1,dots, n$
You can make it upper triangular by a few transformations (after which it's easy to transform to identity).
answered Jan 14 at 12:26
lightxbulblightxbulb
1,140311
1,140311
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073155%2finverse-of-identity-minus-matrix-exponential%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown