An $operatorname{erfi}(x)e^{-x^2}$ integral












8












$begingroup$


I want to find an elementary evaluation of




$$I=int_0^infty left(frac{sqrtpi}2operatorname{erfi}(x)e^{-x^2}-frac1{1+2x}right)dx$$
where $operatorname{erfi}(x)=frac{2}{sqrtpi}int_0^xe^{t^2}dt$.




Rough Solution

$$I=int_0^inftyleft({}_1F_1(1;3/2,-x^2)x-frac1{1+2x}right)dx$$
$$=left(frac{x^2}2{}_2F_2(1,1;3/2,2,-x^2)-frac12ln(1+2x)right)Bigg|_0^infty$$
By using the asymptotic expansion of $_2F_2$ I can get the answer is $frac{gamma}4$, where $gamma$ is the Euler's constant.

I wonder if there is a elementary proof without using hypergeometric function.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    $erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
    $endgroup$
    – Riemann
    Sep 14 '18 at 9:25












  • $begingroup$
    @Riemann. According to the result, it is $text{erfi}$
    $endgroup$
    – Claude Leibovici
    Sep 14 '18 at 9:57






  • 1




    $begingroup$
    Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
    $endgroup$
    – Batominovski
    Sep 14 '18 at 10:19












  • $begingroup$
    @KemonoChen Can you please clarify your question.
    $endgroup$
    – paulplusx
    Sep 14 '18 at 13:16










  • $begingroup$
    It is $operatorname{erfi}$. Sorry for the typo.
    $endgroup$
    – Kemono Chen
    Sep 14 '18 at 13:16
















8












$begingroup$


I want to find an elementary evaluation of




$$I=int_0^infty left(frac{sqrtpi}2operatorname{erfi}(x)e^{-x^2}-frac1{1+2x}right)dx$$
where $operatorname{erfi}(x)=frac{2}{sqrtpi}int_0^xe^{t^2}dt$.




Rough Solution

$$I=int_0^inftyleft({}_1F_1(1;3/2,-x^2)x-frac1{1+2x}right)dx$$
$$=left(frac{x^2}2{}_2F_2(1,1;3/2,2,-x^2)-frac12ln(1+2x)right)Bigg|_0^infty$$
By using the asymptotic expansion of $_2F_2$ I can get the answer is $frac{gamma}4$, where $gamma$ is the Euler's constant.

I wonder if there is a elementary proof without using hypergeometric function.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    $erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
    $endgroup$
    – Riemann
    Sep 14 '18 at 9:25












  • $begingroup$
    @Riemann. According to the result, it is $text{erfi}$
    $endgroup$
    – Claude Leibovici
    Sep 14 '18 at 9:57






  • 1




    $begingroup$
    Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
    $endgroup$
    – Batominovski
    Sep 14 '18 at 10:19












  • $begingroup$
    @KemonoChen Can you please clarify your question.
    $endgroup$
    – paulplusx
    Sep 14 '18 at 13:16










  • $begingroup$
    It is $operatorname{erfi}$. Sorry for the typo.
    $endgroup$
    – Kemono Chen
    Sep 14 '18 at 13:16














8












8








8


4



$begingroup$


I want to find an elementary evaluation of




$$I=int_0^infty left(frac{sqrtpi}2operatorname{erfi}(x)e^{-x^2}-frac1{1+2x}right)dx$$
where $operatorname{erfi}(x)=frac{2}{sqrtpi}int_0^xe^{t^2}dt$.




Rough Solution

$$I=int_0^inftyleft({}_1F_1(1;3/2,-x^2)x-frac1{1+2x}right)dx$$
$$=left(frac{x^2}2{}_2F_2(1,1;3/2,2,-x^2)-frac12ln(1+2x)right)Bigg|_0^infty$$
By using the asymptotic expansion of $_2F_2$ I can get the answer is $frac{gamma}4$, where $gamma$ is the Euler's constant.

I wonder if there is a elementary proof without using hypergeometric function.










share|cite|improve this question











$endgroup$




I want to find an elementary evaluation of




$$I=int_0^infty left(frac{sqrtpi}2operatorname{erfi}(x)e^{-x^2}-frac1{1+2x}right)dx$$
where $operatorname{erfi}(x)=frac{2}{sqrtpi}int_0^xe^{t^2}dt$.




Rough Solution

$$I=int_0^inftyleft({}_1F_1(1;3/2,-x^2)x-frac1{1+2x}right)dx$$
$$=left(frac{x^2}2{}_2F_2(1,1;3/2,2,-x^2)-frac12ln(1+2x)right)Bigg|_0^infty$$
By using the asymptotic expansion of $_2F_2$ I can get the answer is $frac{gamma}4$, where $gamma$ is the Euler's constant.

I wonder if there is a elementary proof without using hypergeometric function.







calculus integration definite-integrals special-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 14 '18 at 13:15







Kemono Chen

















asked Sep 14 '18 at 8:43









Kemono ChenKemono Chen

3,2021844




3,2021844








  • 2




    $begingroup$
    $erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
    $endgroup$
    – Riemann
    Sep 14 '18 at 9:25












  • $begingroup$
    @Riemann. According to the result, it is $text{erfi}$
    $endgroup$
    – Claude Leibovici
    Sep 14 '18 at 9:57






  • 1




    $begingroup$
    Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
    $endgroup$
    – Batominovski
    Sep 14 '18 at 10:19












  • $begingroup$
    @KemonoChen Can you please clarify your question.
    $endgroup$
    – paulplusx
    Sep 14 '18 at 13:16










  • $begingroup$
    It is $operatorname{erfi}$. Sorry for the typo.
    $endgroup$
    – Kemono Chen
    Sep 14 '18 at 13:16














  • 2




    $begingroup$
    $erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
    $endgroup$
    – Riemann
    Sep 14 '18 at 9:25












  • $begingroup$
    @Riemann. According to the result, it is $text{erfi}$
    $endgroup$
    – Claude Leibovici
    Sep 14 '18 at 9:57






  • 1




    $begingroup$
    Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
    $endgroup$
    – Batominovski
    Sep 14 '18 at 10:19












  • $begingroup$
    @KemonoChen Can you please clarify your question.
    $endgroup$
    – paulplusx
    Sep 14 '18 at 13:16










  • $begingroup$
    It is $operatorname{erfi}$. Sorry for the typo.
    $endgroup$
    – Kemono Chen
    Sep 14 '18 at 13:16








2




2




$begingroup$
$erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
$endgroup$
– Riemann
Sep 14 '18 at 9:25






$begingroup$
$erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
$endgroup$
– Riemann
Sep 14 '18 at 9:25














$begingroup$
@Riemann. According to the result, it is $text{erfi}$
$endgroup$
– Claude Leibovici
Sep 14 '18 at 9:57




$begingroup$
@Riemann. According to the result, it is $text{erfi}$
$endgroup$
– Claude Leibovici
Sep 14 '18 at 9:57




1




1




$begingroup$
Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
$endgroup$
– Batominovski
Sep 14 '18 at 10:19






$begingroup$
Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
$endgroup$
– Batominovski
Sep 14 '18 at 10:19














$begingroup$
@KemonoChen Can you please clarify your question.
$endgroup$
– paulplusx
Sep 14 '18 at 13:16




$begingroup$
@KemonoChen Can you please clarify your question.
$endgroup$
– paulplusx
Sep 14 '18 at 13:16












$begingroup$
It is $operatorname{erfi}$. Sorry for the typo.
$endgroup$
– Kemono Chen
Sep 14 '18 at 13:16




$begingroup$
It is $operatorname{erfi}$. Sorry for the typo.
$endgroup$
– Kemono Chen
Sep 14 '18 at 13:16










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2916551%2fan-operatornameerfixe-x2-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2916551%2fan-operatornameerfixe-x2-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Human spaceflight

Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

File:DeusFollowingSea.jpg