An $operatorname{erfi}(x)e^{-x^2}$ integral
$begingroup$
I want to find an elementary evaluation of
$$I=int_0^infty left(frac{sqrtpi}2operatorname{erfi}(x)e^{-x^2}-frac1{1+2x}right)dx$$
where $operatorname{erfi}(x)=frac{2}{sqrtpi}int_0^xe^{t^2}dt$.
Rough Solution
$$I=int_0^inftyleft({}_1F_1(1;3/2,-x^2)x-frac1{1+2x}right)dx$$
$$=left(frac{x^2}2{}_2F_2(1,1;3/2,2,-x^2)-frac12ln(1+2x)right)Bigg|_0^infty$$
By using the asymptotic expansion of $_2F_2$ I can get the answer is $frac{gamma}4$, where $gamma$ is the Euler's constant.
I wonder if there is a elementary proof without using hypergeometric function.
calculus integration definite-integrals special-functions
$endgroup$
|
show 1 more comment
$begingroup$
I want to find an elementary evaluation of
$$I=int_0^infty left(frac{sqrtpi}2operatorname{erfi}(x)e^{-x^2}-frac1{1+2x}right)dx$$
where $operatorname{erfi}(x)=frac{2}{sqrtpi}int_0^xe^{t^2}dt$.
Rough Solution
$$I=int_0^inftyleft({}_1F_1(1;3/2,-x^2)x-frac1{1+2x}right)dx$$
$$=left(frac{x^2}2{}_2F_2(1,1;3/2,2,-x^2)-frac12ln(1+2x)right)Bigg|_0^infty$$
By using the asymptotic expansion of $_2F_2$ I can get the answer is $frac{gamma}4$, where $gamma$ is the Euler's constant.
I wonder if there is a elementary proof without using hypergeometric function.
calculus integration definite-integrals special-functions
$endgroup$
2
$begingroup$
$erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
$endgroup$
– Riemann
Sep 14 '18 at 9:25
$begingroup$
@Riemann. According to the result, it is $text{erfi}$
$endgroup$
– Claude Leibovici
Sep 14 '18 at 9:57
1
$begingroup$
Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
$endgroup$
– Batominovski
Sep 14 '18 at 10:19
$begingroup$
@KemonoChen Can you please clarify your question.
$endgroup$
– paulplusx
Sep 14 '18 at 13:16
$begingroup$
It is $operatorname{erfi}$. Sorry for the typo.
$endgroup$
– Kemono Chen
Sep 14 '18 at 13:16
|
show 1 more comment
$begingroup$
I want to find an elementary evaluation of
$$I=int_0^infty left(frac{sqrtpi}2operatorname{erfi}(x)e^{-x^2}-frac1{1+2x}right)dx$$
where $operatorname{erfi}(x)=frac{2}{sqrtpi}int_0^xe^{t^2}dt$.
Rough Solution
$$I=int_0^inftyleft({}_1F_1(1;3/2,-x^2)x-frac1{1+2x}right)dx$$
$$=left(frac{x^2}2{}_2F_2(1,1;3/2,2,-x^2)-frac12ln(1+2x)right)Bigg|_0^infty$$
By using the asymptotic expansion of $_2F_2$ I can get the answer is $frac{gamma}4$, where $gamma$ is the Euler's constant.
I wonder if there is a elementary proof without using hypergeometric function.
calculus integration definite-integrals special-functions
$endgroup$
I want to find an elementary evaluation of
$$I=int_0^infty left(frac{sqrtpi}2operatorname{erfi}(x)e^{-x^2}-frac1{1+2x}right)dx$$
where $operatorname{erfi}(x)=frac{2}{sqrtpi}int_0^xe^{t^2}dt$.
Rough Solution
$$I=int_0^inftyleft({}_1F_1(1;3/2,-x^2)x-frac1{1+2x}right)dx$$
$$=left(frac{x^2}2{}_2F_2(1,1;3/2,2,-x^2)-frac12ln(1+2x)right)Bigg|_0^infty$$
By using the asymptotic expansion of $_2F_2$ I can get the answer is $frac{gamma}4$, where $gamma$ is the Euler's constant.
I wonder if there is a elementary proof without using hypergeometric function.
calculus integration definite-integrals special-functions
calculus integration definite-integrals special-functions
edited Sep 14 '18 at 13:15
Kemono Chen
asked Sep 14 '18 at 8:43
Kemono ChenKemono Chen
3,2021844
3,2021844
2
$begingroup$
$erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
$endgroup$
– Riemann
Sep 14 '18 at 9:25
$begingroup$
@Riemann. According to the result, it is $text{erfi}$
$endgroup$
– Claude Leibovici
Sep 14 '18 at 9:57
1
$begingroup$
Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
$endgroup$
– Batominovski
Sep 14 '18 at 10:19
$begingroup$
@KemonoChen Can you please clarify your question.
$endgroup$
– paulplusx
Sep 14 '18 at 13:16
$begingroup$
It is $operatorname{erfi}$. Sorry for the typo.
$endgroup$
– Kemono Chen
Sep 14 '18 at 13:16
|
show 1 more comment
2
$begingroup$
$erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
$endgroup$
– Riemann
Sep 14 '18 at 9:25
$begingroup$
@Riemann. According to the result, it is $text{erfi}$
$endgroup$
– Claude Leibovici
Sep 14 '18 at 9:57
1
$begingroup$
Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
$endgroup$
– Batominovski
Sep 14 '18 at 10:19
$begingroup$
@KemonoChen Can you please clarify your question.
$endgroup$
– paulplusx
Sep 14 '18 at 13:16
$begingroup$
It is $operatorname{erfi}$. Sorry for the typo.
$endgroup$
– Kemono Chen
Sep 14 '18 at 13:16
2
2
$begingroup$
$erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
$endgroup$
– Riemann
Sep 14 '18 at 9:25
$begingroup$
$erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
$endgroup$
– Riemann
Sep 14 '18 at 9:25
$begingroup$
@Riemann. According to the result, it is $text{erfi}$
$endgroup$
– Claude Leibovici
Sep 14 '18 at 9:57
$begingroup$
@Riemann. According to the result, it is $text{erfi}$
$endgroup$
– Claude Leibovici
Sep 14 '18 at 9:57
1
1
$begingroup$
Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
$endgroup$
– Batominovski
Sep 14 '18 at 10:19
$begingroup$
Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
$endgroup$
– Batominovski
Sep 14 '18 at 10:19
$begingroup$
@KemonoChen Can you please clarify your question.
$endgroup$
– paulplusx
Sep 14 '18 at 13:16
$begingroup$
@KemonoChen Can you please clarify your question.
$endgroup$
– paulplusx
Sep 14 '18 at 13:16
$begingroup$
It is $operatorname{erfi}$. Sorry for the typo.
$endgroup$
– Kemono Chen
Sep 14 '18 at 13:16
$begingroup$
It is $operatorname{erfi}$. Sorry for the typo.
$endgroup$
– Kemono Chen
Sep 14 '18 at 13:16
|
show 1 more comment
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2916551%2fan-operatornameerfixe-x2-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2916551%2fan-operatornameerfixe-x2-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
$erfi(x)$ and $erf(x)$ , which one is yours? In general $operatorname{erfi}(x)=frac{2}{sqrt{pi}}int_0^xe^{z^2}dz,$ and $operatorname{erf}(x)=frac{2}{sqrt{pi}}int_0^xe^{-z^2}dz.$
$endgroup$
– Riemann
Sep 14 '18 at 9:25
$begingroup$
@Riemann. According to the result, it is $text{erfi}$
$endgroup$
– Claude Leibovici
Sep 14 '18 at 9:57
1
$begingroup$
Probably not useful, but $$I=int_0^infty,left(frac{sqrt{pi}}{2},text{erfc}(x),expleft(+x^2right)-frac{1}{1+2x}right),text{d}x,.$$ Here, $text{erfc}(x)=1-text{erf}(x)$ for all $xinmathbb{C}$. (Of course, I assume that $text{erf}$ and $text{erfi}$ are defined correctly as Riemann suggested.)
$endgroup$
– Batominovski
Sep 14 '18 at 10:19
$begingroup$
@KemonoChen Can you please clarify your question.
$endgroup$
– paulplusx
Sep 14 '18 at 13:16
$begingroup$
It is $operatorname{erfi}$. Sorry for the typo.
$endgroup$
– Kemono Chen
Sep 14 '18 at 13:16