Integrate using trigonometric substitution. Am I on the right path?












3












$begingroup$


I have been trying to solve:



$$int frac{sqrt{x^2-9}}{x^3} dx$$



I am letting $ x = 3sec theta$ and so $dx = 3 sec theta tan theta$



So then I have:



$$int frac{sqrt{9sec^2 theta - 9}}{27 sec^3 theta} dx$$



$$int frac{sqrt{9(sec^2 theta - 1)}}{27 sec^3 theta} 3 sec theta tan theta, d theta$$



$$ int frac{3tan theta}{27 sec^3 theta} 3 sec theta tan theta, d theta$$



$$ = int frac{9 tan ^2 theta}{27 sec ^2 theta} d theta$$



$$ = int frac{tan ^2 theta}{3 sec ^2 theta} d theta$$



$$ int frac{sin^2 theta}{cos^2 theta} cdot frac{cos^2 theta}{3} d theta$$



$$ int frac{sin^2 theta}{3} d theta$$



$$frac{1}{3} int sin^2 theta d theta$$



Am I on the right track?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
    $endgroup$
    – Bernard
    Feb 3 at 16:46








  • 1




    $begingroup$
    On the right track except for some missing $=$ and $dtheta$.
    $endgroup$
    – Bernard Massé
    Feb 3 at 17:06


















3












$begingroup$


I have been trying to solve:



$$int frac{sqrt{x^2-9}}{x^3} dx$$



I am letting $ x = 3sec theta$ and so $dx = 3 sec theta tan theta$



So then I have:



$$int frac{sqrt{9sec^2 theta - 9}}{27 sec^3 theta} dx$$



$$int frac{sqrt{9(sec^2 theta - 1)}}{27 sec^3 theta} 3 sec theta tan theta, d theta$$



$$ int frac{3tan theta}{27 sec^3 theta} 3 sec theta tan theta, d theta$$



$$ = int frac{9 tan ^2 theta}{27 sec ^2 theta} d theta$$



$$ = int frac{tan ^2 theta}{3 sec ^2 theta} d theta$$



$$ int frac{sin^2 theta}{cos^2 theta} cdot frac{cos^2 theta}{3} d theta$$



$$ int frac{sin^2 theta}{3} d theta$$



$$frac{1}{3} int sin^2 theta d theta$$



Am I on the right track?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
    $endgroup$
    – Bernard
    Feb 3 at 16:46








  • 1




    $begingroup$
    On the right track except for some missing $=$ and $dtheta$.
    $endgroup$
    – Bernard Massé
    Feb 3 at 17:06
















3












3








3





$begingroup$


I have been trying to solve:



$$int frac{sqrt{x^2-9}}{x^3} dx$$



I am letting $ x = 3sec theta$ and so $dx = 3 sec theta tan theta$



So then I have:



$$int frac{sqrt{9sec^2 theta - 9}}{27 sec^3 theta} dx$$



$$int frac{sqrt{9(sec^2 theta - 1)}}{27 sec^3 theta} 3 sec theta tan theta, d theta$$



$$ int frac{3tan theta}{27 sec^3 theta} 3 sec theta tan theta, d theta$$



$$ = int frac{9 tan ^2 theta}{27 sec ^2 theta} d theta$$



$$ = int frac{tan ^2 theta}{3 sec ^2 theta} d theta$$



$$ int frac{sin^2 theta}{cos^2 theta} cdot frac{cos^2 theta}{3} d theta$$



$$ int frac{sin^2 theta}{3} d theta$$



$$frac{1}{3} int sin^2 theta d theta$$



Am I on the right track?










share|cite|improve this question











$endgroup$




I have been trying to solve:



$$int frac{sqrt{x^2-9}}{x^3} dx$$



I am letting $ x = 3sec theta$ and so $dx = 3 sec theta tan theta$



So then I have:



$$int frac{sqrt{9sec^2 theta - 9}}{27 sec^3 theta} dx$$



$$int frac{sqrt{9(sec^2 theta - 1)}}{27 sec^3 theta} 3 sec theta tan theta, d theta$$



$$ int frac{3tan theta}{27 sec^3 theta} 3 sec theta tan theta, d theta$$



$$ = int frac{9 tan ^2 theta}{27 sec ^2 theta} d theta$$



$$ = int frac{tan ^2 theta}{3 sec ^2 theta} d theta$$



$$ int frac{sin^2 theta}{cos^2 theta} cdot frac{cos^2 theta}{3} d theta$$



$$ int frac{sin^2 theta}{3} d theta$$



$$frac{1}{3} int sin^2 theta d theta$$



Am I on the right track?







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 3 at 17:17









J. W. Tanner

3,6551320




3,6551320










asked Feb 3 at 16:36









Jwan622Jwan622

2,28011632




2,28011632












  • $begingroup$
    Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
    $endgroup$
    – Bernard
    Feb 3 at 16:46








  • 1




    $begingroup$
    On the right track except for some missing $=$ and $dtheta$.
    $endgroup$
    – Bernard Massé
    Feb 3 at 17:06




















  • $begingroup$
    Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
    $endgroup$
    – Bernard
    Feb 3 at 16:46








  • 1




    $begingroup$
    On the right track except for some missing $=$ and $dtheta$.
    $endgroup$
    – Bernard Massé
    Feb 3 at 17:06


















$begingroup$
Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
$endgroup$
– Bernard
Feb 3 at 16:46






$begingroup$
Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
$endgroup$
– Bernard
Feb 3 at 16:46






1




1




$begingroup$
On the right track except for some missing $=$ and $dtheta$.
$endgroup$
– Bernard Massé
Feb 3 at 17:06






$begingroup$
On the right track except for some missing $=$ and $dtheta$.
$endgroup$
– Bernard Massé
Feb 3 at 17:06












2 Answers
2






active

oldest

votes


















4












$begingroup$

Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:



$$
sin^2{theta}=frac{1-cos(2theta)}{2}.
$$



Also, a bit later, you're going to need this formula:



$$
sin{(2theta)}=2sin{theta}cos{theta}.
$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    $$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
    and we know that $cosh^2theta-1=sinh^2theta$
    $$x=3cosh(y)$$
    $$dx=3sinh(y)dy$$
    $$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
    a reduction formula can then be used






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098752%2fintegrate-using-trigonometric-substitution-am-i-on-the-right-path%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:



      $$
      sin^2{theta}=frac{1-cos(2theta)}{2}.
      $$



      Also, a bit later, you're going to need this formula:



      $$
      sin{(2theta)}=2sin{theta}cos{theta}.
      $$






      share|cite|improve this answer











      $endgroup$


















        4












        $begingroup$

        Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:



        $$
        sin^2{theta}=frac{1-cos(2theta)}{2}.
        $$



        Also, a bit later, you're going to need this formula:



        $$
        sin{(2theta)}=2sin{theta}cos{theta}.
        $$






        share|cite|improve this answer











        $endgroup$
















          4












          4








          4





          $begingroup$

          Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:



          $$
          sin^2{theta}=frac{1-cos(2theta)}{2}.
          $$



          Also, a bit later, you're going to need this formula:



          $$
          sin{(2theta)}=2sin{theta}cos{theta}.
          $$






          share|cite|improve this answer











          $endgroup$



          Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:



          $$
          sin^2{theta}=frac{1-cos(2theta)}{2}.
          $$



          Also, a bit later, you're going to need this formula:



          $$
          sin{(2theta)}=2sin{theta}cos{theta}.
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Feb 3 at 17:15

























          answered Feb 3 at 17:02









          Michael RybkinMichael Rybkin

          3,939421




          3,939421























              1












              $begingroup$

              $$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
              and we know that $cosh^2theta-1=sinh^2theta$
              $$x=3cosh(y)$$
              $$dx=3sinh(y)dy$$
              $$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
              a reduction formula can then be used






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                $$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
                and we know that $cosh^2theta-1=sinh^2theta$
                $$x=3cosh(y)$$
                $$dx=3sinh(y)dy$$
                $$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
                a reduction formula can then be used






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
                  and we know that $cosh^2theta-1=sinh^2theta$
                  $$x=3cosh(y)$$
                  $$dx=3sinh(y)dy$$
                  $$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
                  a reduction formula can then be used






                  share|cite|improve this answer









                  $endgroup$



                  $$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
                  and we know that $cosh^2theta-1=sinh^2theta$
                  $$x=3cosh(y)$$
                  $$dx=3sinh(y)dy$$
                  $$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
                  a reduction formula can then be used







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Feb 3 at 20:29









                  Henry LeeHenry Lee

                  2,199319




                  2,199319






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098752%2fintegrate-using-trigonometric-substitution-am-i-on-the-right-path%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Human spaceflight

                      Can not write log (Is /dev/pts mounted?) - openpty in Ubuntu-on-Windows?

                      張江高科駅