Integrate using trigonometric substitution. Am I on the right path?
$begingroup$
I have been trying to solve:
$$int frac{sqrt{x^2-9}}{x^3} dx$$
I am letting $ x = 3sec theta$ and so $dx = 3 sec theta tan theta$
So then I have:
$$int frac{sqrt{9sec^2 theta - 9}}{27 sec^3 theta} dx$$
$$int frac{sqrt{9(sec^2 theta - 1)}}{27 sec^3 theta} 3 sec theta tan theta, d theta$$
$$ int frac{3tan theta}{27 sec^3 theta} 3 sec theta tan theta, d theta$$
$$ = int frac{9 tan ^2 theta}{27 sec ^2 theta} d theta$$
$$ = int frac{tan ^2 theta}{3 sec ^2 theta} d theta$$
$$ int frac{sin^2 theta}{cos^2 theta} cdot frac{cos^2 theta}{3} d theta$$
$$ int frac{sin^2 theta}{3} d theta$$
$$frac{1}{3} int sin^2 theta d theta$$
Am I on the right track?
integration
$endgroup$
add a comment |
$begingroup$
I have been trying to solve:
$$int frac{sqrt{x^2-9}}{x^3} dx$$
I am letting $ x = 3sec theta$ and so $dx = 3 sec theta tan theta$
So then I have:
$$int frac{sqrt{9sec^2 theta - 9}}{27 sec^3 theta} dx$$
$$int frac{sqrt{9(sec^2 theta - 1)}}{27 sec^3 theta} 3 sec theta tan theta, d theta$$
$$ int frac{3tan theta}{27 sec^3 theta} 3 sec theta tan theta, d theta$$
$$ = int frac{9 tan ^2 theta}{27 sec ^2 theta} d theta$$
$$ = int frac{tan ^2 theta}{3 sec ^2 theta} d theta$$
$$ int frac{sin^2 theta}{cos^2 theta} cdot frac{cos^2 theta}{3} d theta$$
$$ int frac{sin^2 theta}{3} d theta$$
$$frac{1}{3} int sin^2 theta d theta$$
Am I on the right track?
integration
$endgroup$
$begingroup$
Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
$endgroup$
– Bernard
Feb 3 at 16:46
1
$begingroup$
On the right track except for some missing $=$ and $dtheta$.
$endgroup$
– Bernard Massé
Feb 3 at 17:06
add a comment |
$begingroup$
I have been trying to solve:
$$int frac{sqrt{x^2-9}}{x^3} dx$$
I am letting $ x = 3sec theta$ and so $dx = 3 sec theta tan theta$
So then I have:
$$int frac{sqrt{9sec^2 theta - 9}}{27 sec^3 theta} dx$$
$$int frac{sqrt{9(sec^2 theta - 1)}}{27 sec^3 theta} 3 sec theta tan theta, d theta$$
$$ int frac{3tan theta}{27 sec^3 theta} 3 sec theta tan theta, d theta$$
$$ = int frac{9 tan ^2 theta}{27 sec ^2 theta} d theta$$
$$ = int frac{tan ^2 theta}{3 sec ^2 theta} d theta$$
$$ int frac{sin^2 theta}{cos^2 theta} cdot frac{cos^2 theta}{3} d theta$$
$$ int frac{sin^2 theta}{3} d theta$$
$$frac{1}{3} int sin^2 theta d theta$$
Am I on the right track?
integration
$endgroup$
I have been trying to solve:
$$int frac{sqrt{x^2-9}}{x^3} dx$$
I am letting $ x = 3sec theta$ and so $dx = 3 sec theta tan theta$
So then I have:
$$int frac{sqrt{9sec^2 theta - 9}}{27 sec^3 theta} dx$$
$$int frac{sqrt{9(sec^2 theta - 1)}}{27 sec^3 theta} 3 sec theta tan theta, d theta$$
$$ int frac{3tan theta}{27 sec^3 theta} 3 sec theta tan theta, d theta$$
$$ = int frac{9 tan ^2 theta}{27 sec ^2 theta} d theta$$
$$ = int frac{tan ^2 theta}{3 sec ^2 theta} d theta$$
$$ int frac{sin^2 theta}{cos^2 theta} cdot frac{cos^2 theta}{3} d theta$$
$$ int frac{sin^2 theta}{3} d theta$$
$$frac{1}{3} int sin^2 theta d theta$$
Am I on the right track?
integration
integration
edited Feb 3 at 17:17
J. W. Tanner
3,6551320
3,6551320
asked Feb 3 at 16:36
Jwan622Jwan622
2,28011632
2,28011632
$begingroup$
Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
$endgroup$
– Bernard
Feb 3 at 16:46
1
$begingroup$
On the right track except for some missing $=$ and $dtheta$.
$endgroup$
– Bernard Massé
Feb 3 at 17:06
add a comment |
$begingroup$
Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
$endgroup$
– Bernard
Feb 3 at 16:46
1
$begingroup$
On the right track except for some missing $=$ and $dtheta$.
$endgroup$
– Bernard Massé
Feb 3 at 17:06
$begingroup$
Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
$endgroup$
– Bernard
Feb 3 at 16:46
$begingroup$
Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
$endgroup$
– Bernard
Feb 3 at 16:46
1
1
$begingroup$
On the right track except for some missing $=$ and $dtheta$.
$endgroup$
– Bernard Massé
Feb 3 at 17:06
$begingroup$
On the right track except for some missing $=$ and $dtheta$.
$endgroup$
– Bernard Massé
Feb 3 at 17:06
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:
$$
sin^2{theta}=frac{1-cos(2theta)}{2}.
$$
Also, a bit later, you're going to need this formula:
$$
sin{(2theta)}=2sin{theta}cos{theta}.
$$
$endgroup$
add a comment |
$begingroup$
$$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
and we know that $cosh^2theta-1=sinh^2theta$
$$x=3cosh(y)$$
$$dx=3sinh(y)dy$$
$$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
a reduction formula can then be used
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098752%2fintegrate-using-trigonometric-substitution-am-i-on-the-right-path%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:
$$
sin^2{theta}=frac{1-cos(2theta)}{2}.
$$
Also, a bit later, you're going to need this formula:
$$
sin{(2theta)}=2sin{theta}cos{theta}.
$$
$endgroup$
add a comment |
$begingroup$
Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:
$$
sin^2{theta}=frac{1-cos(2theta)}{2}.
$$
Also, a bit later, you're going to need this formula:
$$
sin{(2theta)}=2sin{theta}cos{theta}.
$$
$endgroup$
add a comment |
$begingroup$
Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:
$$
sin^2{theta}=frac{1-cos(2theta)}{2}.
$$
Also, a bit later, you're going to need this formula:
$$
sin{(2theta)}=2sin{theta}cos{theta}.
$$
$endgroup$
Yes, your solution so far is correct. Now, to integrate $int sin^2{theta},dtheta$, use the half-angle formula for the sine function:
$$
sin^2{theta}=frac{1-cos(2theta)}{2}.
$$
Also, a bit later, you're going to need this formula:
$$
sin{(2theta)}=2sin{theta}cos{theta}.
$$
edited Feb 3 at 17:15
answered Feb 3 at 17:02
Michael RybkinMichael Rybkin
3,939421
3,939421
add a comment |
add a comment |
$begingroup$
$$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
and we know that $cosh^2theta-1=sinh^2theta$
$$x=3cosh(y)$$
$$dx=3sinh(y)dy$$
$$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
a reduction formula can then be used
$endgroup$
add a comment |
$begingroup$
$$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
and we know that $cosh^2theta-1=sinh^2theta$
$$x=3cosh(y)$$
$$dx=3sinh(y)dy$$
$$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
a reduction formula can then be used
$endgroup$
add a comment |
$begingroup$
$$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
and we know that $cosh^2theta-1=sinh^2theta$
$$x=3cosh(y)$$
$$dx=3sinh(y)dy$$
$$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
a reduction formula can then be used
$endgroup$
$$I=intfrac{sqrt{x^2-9}}{x^3}dx=intfrac{3sqrt{(x/3)^2-1}}{x^3}dx$$
and we know that $cosh^2theta-1=sinh^2theta$
$$x=3cosh(y)$$
$$dx=3sinh(y)dy$$
$$I=9intfrac{sqrt{cosh^2(y)-1}}{27cosh^3(y)}sinh(y)dy=frac13intfrac{sinh^2(y)}{cosh^3(y)}dy=frac13inttext{sech}(y)-text{sech}^3(y)dy$$
a reduction formula can then be used
answered Feb 3 at 20:29
Henry LeeHenry Lee
2,199319
2,199319
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098752%2fintegrate-using-trigonometric-substitution-am-i-on-the-right-path%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Yes, you. However, I think a hyperbolic substitution would be a bit shorter.
$endgroup$
– Bernard
Feb 3 at 16:46
1
$begingroup$
On the right track except for some missing $=$ and $dtheta$.
$endgroup$
– Bernard Massé
Feb 3 at 17:06